It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Drought is the major environmental factor limiting wheat production worldwide. Developing novel cultivars with greater drought tolerance is the most viable solution to ensure sustainable agricultural production and alleviating threats to food-security. Here we established a core-collection of landraces and modern durum wheat cultivars (WheatME, n = 36), from the Middle East region (Jordan, Palestine and Israel) aiming at unlocking the genetic and morpho-physiological adaptation to semi-arid environment conditions. Interestingly, genetic analysis of the WheatME core-collection could not distinguish the landraces according to their country of origin. Field-based evaluation of the core-collection conducted across range of contrasting environmental conditions: Til-Palestine, Bet-Dagan-Israel and Irbid-Jordan with annual precipitation of 500 mm, 360 mm and 315 mm, respectively. The Til environment showed highest grain yield while the Irbid environment showed the lowest values. Analysis of variance showed a significant Genotype × Environment interaction for plant phenology traits (plant height and heading date) and productivity traits (1000-kernel weight, and grain yield). Principal component analysis showed three main cultivar groups: High yielding lines (modern durum cultivars, and landraces), tall late flowering landraces, and landraces with high grain weight. This knowledge could serve as basis for future breeding efforts to develop new elite cultivars adapted to the Mediterranean Basin’s semi-arid conditions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 Biodiversity & Environmental Research Center (BERC), Til 458, Palestine
2 The Institute of Plant Sciences, Agriculture Research Organization (ARO)–Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
3 The Institute of Plant Sciences, Agriculture Research Organization (ARO)–Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.B 12, Rehovot 7610001, Israel
4 School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
5 Field Crop Department, National Agricultural Research Center (NARC), P.O.B 639, Baqa’ 19381, Jordan
6 The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.B 12, Rehovot 7610001, Israel