It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Cyanobacterial blooms can cause serious damage to aquatic ecosystems. However, we have demonstrated that typical algae-blooming species Microcystis aeruginosa (M. aeruginosa) combined with photocatalysts could synergistically facilitate the photodecontamination of tetracycline hydrochloride (TC) and Cr(VI). In this study, for the first time, harmful algae were successfully converted into photoreactive bionano hybrid materials by immobilizing M. aeruginosa cells onto polyacrylonitrile (PAN)-TiO2/Ag hybrid nanofibers, and their photocatalytic activity was evaluated. The addition of M. aeruginosa significantly improved the photodecontamination, and the reaction rate constant (k) values of TC and Cr(VI) degradation by M. aeruginosa-PAN/TiO2/Ag nanofiber mats were 2.4 and 1.5-fold higher than that of bare PAN/TiO2/Ag nanofiber. Photoreaction caused damage to algae cells, but no microcystin was found that had been photodegraded simultaneously. The effects of various active species were also investigated, and the photodegradation mechanism was proposed. Recycling tests revealed that this flexible M. aeruginosa-PAN/TiO2/Ag hybrid mat had potential application in the removal of mixed organic and inorganic pollutants with high efficiency and without secondary pollutants. Thus, harmful algae blooms could serve as an efficient materials to remove toxic pollutants in a sustainable way under visible light irradiation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
2 Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China
3 School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
4 Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 100049, China
5 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road Chaoyang District, Beijing 100101, China; Key Laboratory of Regional Sustainable Development Modeling, Chinese Academy of Sciences, Beijing 100101, China
6 CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
7 Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; Center of Integrated Water-Energy-Food Studies (iWEF), School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK