It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Hydrogen is a promising energy carrier, and is exploitable to extract energy from fossil fuels, biomasses, and intermittent renewable energy sources and its generation from fossil fuels, with CO2 separation at the source being one of the most promising pathways for fossil fuels’ utilization. This work focuses on a particular configuration called the Reformer and Membrane Module (RMM), which alternates between stages of Steam Reforming (SR) reactions with H2 separation stages to overcome the thermodynamic limit of the conventional SR. The configuration has numerous advantages with respect to the more widely studied and tested membrane reactors, and has been tested during a pilot-scale research project. Although numerous modelling works appeared in the literature, the design features of the material exchanger (in the so-called RMM architecture) of different geometrical configurations have not been developed, and the mass transfer correlations, capable of providing design tools useful for such membrane modules, are not available. The purpose of this work is therefore to apply a physical-mathematical model of the mass transfer, in three different geometries, considering both concentration polarization and membrane permeation, in order to: (i) simulate the cited experimental results; (ii) estimate the scaling-up correlations for the “material exchange modules”; and (iii) identify the mass transfer limiting regime in relation to the gas mass flow rate.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Unit of Process Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
2 Unit of Chemical-physics Fundamentals in Chemical Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy