It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
With 1-methyl-2-pyrrolidinone (NMP) as the solvent, the biodegradable gel polymer electrolyte films are prepared based on poly(vinyl alcohol) (PVA), lithium bis(trifluoromethane)sulfonimide (LiTFSI), and 1-ethyl-3 methylimidazoliumbis(trifluoromethylsulfonyl)imide (EMITFSI) by means of solution casting. The films are characterized to evaluate their structural and electrochemical performance. The 60PVA-40LiTFSI + 10 wt.% EMITFSI system exhibits excellent mechanical properties and a high ionic transference number (0.995), indicating primary ionic conduction in the film. In addition, because of the flexibility of polymer chain segments, its relaxation time is as low as 5.30 × 10−7 s. Accordingly, a high ionic conductivity (3.6 × 10−3 S cm−1) and a wide electrochemical stability window (~5 V) are obtained. The electric double-layer capacitor (EDLC) based on this electrolyte system shows a specific capacitance of 101 F g−1 and an energy density of 10.3 W h kg−1, even after 1000 charge-discharge cycles at a current density of 0.4 A g−1 under a charging voltage of 2 V. All these excellent properties imply that the NMP-soluble 60PVA-40LiTFSI + 10 wt.% EMITFSI gel polymer electrolyte could be a promising electrolyte candidate for electrochemical device applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
2 State Key Laboratory in Ultra-precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
3 Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
4 Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China