It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Engine health monitoring is very important to maintain the life of engines, and the power supply to sensor nodes is a key issue that needs to be solved. The piezoelectric vibration energy harvester has attracted much attention due to its obvious advantages in configuration, electromechanical conversion efficiency, and output power. However, the narrow bandwidth has restricted its practical application. A self-powered engine health monitoring system was proposed in this paper, and an L-shaped wideband piezoelectric energy harvester was designed and implemented. The L-shaped beam-mass structure and the piezoelectric bimorph cantilever beam structure was combined to form the wideband piezoelectric energy harvester configuration, which realized effective output at both resonance points. The theoretical model and finite element simulation analysis of the wideband piezoelectric energy harvester were proposed and the parameters were optimized based on that to meet the requirement of the vibration frequency of the engine. The experimental results show that the proposed energy harvester can be applied into the automobile engine health monitoring system. Engine signal analysis results also demonstrate that the proposed system can be used for engine health monitoring.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Key Laboratory for Optoelectronic Technology & Systems, Ministry of Education of China, Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044, China
2 Department of Electro-Mechanic Engineering, Chongqing College of Electronic Engineering, Chongqing 401331, China
3 Chongqing Acoustic-Optic-Electric Corporation, China Electronic Technology Group Corporation, Chongqing 400060, China
4 Science and Technology on Analog Integrated Circuit Laboratory, Chongqing 401332, China