Full text

Turn on search term navigation

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Seed germination, a pivotal process in higher plants, is precisely regulated by various external and internal stimuli, including brassinosteroid (BR) and gibberellin (GA) phytohormones. The molecular mechanisms of crosstalk between BRs and GAs in regulating plant growth are well established. However, whether BRs interact with GAs to coordinate seed germination remains unknown, as do their common downstream targets. In the present study, 45 differentially expressed proteins responding to both BR and GA deficiency were identified using isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis during seed germination. The results indicate that crosstalk between BRs and GAs participates in seed germination, at least in part, by modulating the same set of responsive proteins. Moreover, most targets exhibited concordant changes in response to BR and GA deficiency, and gene ontology (GO) indicated that most possess catalytic activity and are involved in various metabolic processes. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis was used to construct a regulatory network of downstream proteins mediating BR- and GA-regulated seed germination. The mutation of GRP, one representative target, notably suppressed seed germination. Our findings not only provide critical clues for validating BR–GA crosstalk during rice seed germination, but also help to optimise molecular regulatory networks.

Details

Title
iTRAQ-Based Analysis of Proteins Co-Regulated by Brassinosteroids and Gibberellins in Rice Embryos during Seed Germination
Author
Qian-Feng, Li 1   VIAFID ORCID Logo  ; Jin-Dong, Wang 2 ; Xiong, Min 2 ; Wei, Ke 2 ; Zhou, Peng 2 ; Li-Chun, Huang 2 ; Chang-Quan, Zhang 1 ; Xiao-Lei, Fan 1 ; Qiao-Quan, Liu 1   VIAFID ORCID Logo 

 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China 
 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China 
First page
3460
Publication year
2018
Publication date
2018
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2582834277
Copyright
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.