It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The field of controlled polymerization is growing and evolving at unprecedented rates, facilitating polymer scientists to engineer the structure and property of polymer materials for a variety of applications. However, the lack of degradability, particularly in vinyl polymers, is a general concern not only for environmental sustainability, but also for biomedical applications. In recent years, there has been a significant effort to develop reversible polymerization approaches in those well-established controlled polymerization systems. Reversible polymerization typically involves two steps, including (i) forward polymerization, which converts small monomers into macromolecule; and (ii) depolymerization, which is capable of regenerating original monomers. Furthermore, recycled monomers can be repolymerized into new polymers. In this perspective, we highlight recent developments of reversible polymerization in those controlled polymerization systems and offer insight into the promise and utility of reversible polymerization systems. More importantly, the current challenges and future directions to solve those problems are discussed. We hope this perspective can serve as an “initiator” to promote continuing innovations in this fairly new area.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275, USA
2 School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
3 Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA