It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The spread of viral pathogens both between and within hosts is inherently a spatial process. While the spatial aspects of viral spread at the epidemiological level have been increasingly well characterized, the spatial aspects of viral spread within infected hosts are still understudied. Here, with a focus on influenza A viruses (IAVs), we first review experimental studies that have shed light on the mechanisms and spatial dynamics of viral spread within hosts. These studies provide strong empirical evidence for highly localized IAV spread within hosts. Since mathematical and computational within-host models have been increasingly used to gain a quantitative understanding of observed viral dynamic patterns, we then review the (relatively few) computational modeling studies that have shed light on possible factors that structure the dynamics of spatial within-host IAV spread. These factors include the dispersal distance of virions, the localization of the immune response, and heterogeneity in host cell phenotypes across the respiratory tract. While informative, we find in these studies a striking absence of theoretical expectations of how spatial dynamics may impact the dynamics of viral populations. To mitigate this, we turn to the extensive ecological and evolutionary literature on range expansions to provide informed theoretical expectations. We find that factors such as the type of density dependence, the frequency of long-distance dispersal, specific life history characteristics, and the extent of spatial heterogeneity are critical factors affecting the speed of population spread and the genetic composition of spatially expanding populations. For each factor that we identified in the theoretical literature, we draw parallels to its analog in viral populations. We end by discussing current knowledge gaps related to the spatial component of within-host IAV spread and the potential for within-host spatial considerations to inform the development of disease control strategies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Biology, Emory University, Atlanta, GA 30322, USA
2 Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
3 T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA