It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
By using Bochner transform, Stepanov almost periodic functions inherit some basic properties directly from almost periodic functions. Recently, this old work was extended to time scales. However, we show that Bochner transform is not valid on time scales. Then we present a revised version, called Bochner-like transform, for time scales, and prove that a function is Stepanov almost periodic if and only if its Bochner-like transform is almost periodic on time scales. Some basic properties including the composition theorem of Stepanov almost periodic functions are obtained by applying Bochner-like transform. Our results correct the recent results where Bochner transform is used on time scales. As an application, we give some results on dynamic equations with Stepanov almost periodic terms.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer