It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The present work aims to elucidate the possibility of injecting ozone into surface waters combined with urban wastewaters in order to improve the water quality of the High Atoyac Sub-basin (HAS) in Central Mexico. For this purpose, twenty physicochemical parameters, eight heavy metals, seven organic compounds, and one biological indicator were assessed in water from different sites of the studied area (the Alseseca River, the Atoyac River and the Valsequillo Reservoir). Results demonstrated that O3 injection led to the decrease of the aromatic fraction of organic molecules since the Spectral Absorption Coefficient at 254 nanometers (SAC254) reduction was found to be 31.7% in the Valsequillo Reservoir water samples. Maximum Chemical Oxygen Demand (COD) removal was observed to be 60.2% from the Alseseca River with a 0.26 mg O3/mg initial COD dose. Among all the phthalates studied in the present work, Di(2-ethylhexyl) phthalate (DEHP) exhibited the highest concentration (5.8 μg/L in the Atoyac River). Treatment with O3 was not effective in eliminating fecal coliforms (FC) in waters that host high organic matter (OM) loads as opposed to waters with low OM. After the injection of 4.7 mg O3/mg COD in the VO3-AT water sample, a 90% removal of Iron (Fe) and Aluminum (Al) was registered; while Manganese (Mn), Nickel (Ni), Zinc (Zn), and Cooper (Cu) showed a 73%, 67%, 81%, and 80% removal, respectively; Chromium (Cr) registered the highest removal (~100%). The present work demonstrated that while finding a suitable O3 dose to improve the quality of water in the HAS, the 5-days Biochemical Oxygen Demand (BOD5)/COD ratio (i.e., biodegradability) is more important than the overall OM removal percentage proving that O3 injection is a feasible process for the treatment of eutrophic waters from HAS.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de junio de 1520, Barrio de la Laguna Ticomán, Del. Gustavo A Madero C.P. 07340, Mexico
2 Escuela Nacional de Ciencias Biológicas (ENCB) del Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu SN, San Bartolo Atepehuacan, U.P. Adolfo López Mateos, Gustavo A. Madero C.P. 07738, Mexico
3 Faculty of Bioenvironmental Sciences, Universidad Popular Autónoma del Estado de Puebla (UPAEP), 17 Sur No. 901 Barrio de Santiago, Puebla, Puebla, México C.P. 72410, Mexico