It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Target detection technology of synthetic aperture radar (SAR) imageis widely used in the field of military reconnaissance and surveillance. The traditional SAR image target detection methods need to be provided a lot of empirical knowledge because the characteristics of SAR images in different configurations (attitude, pitch angle, imaging parameters, etc.) will change greatly,resulting in high generalization error. Currently, deep learning method has achieved great success in the field of image processing. Research shows that deep learning can achieve a more intrinsic description of the data, while the model has a stronger ability of modeling and generalization. In order to solve the problem of insufficient data in SAR data sets, an experimental system for acquiring SAR image data in real scenes was built. Then the transfer learning method and the improved convolution neural network algorithm (PCA+Faster R-CNN) are applied to improve the target detection precision. Finally, experimental results demonstrate the significant effectiveness of the proposed method.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer