It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Mastication is one of the most fundamental functions for the conservation of human life. To clarify the pathogenetic mechanism of various oral dysfunctions, the demand for devices for evaluating stomatognathic function has been increasing. The aim of the present study was to develop a system to reconstruct and visualize 3-dimensional (3D) mandibular movements relative to the maxilla, including dynamic transition of occlusal contacts between the upper and lower dentitions during mastication in mice.
Methods
First, mandibular movements with six degrees of freedom were measured using a motion capture system comprising two high-speed cameras and four reflective markers. Second, 3D models of maxillofacial structure were reconstructed from micro-computed tomography images. Movement trajectories of anatomical landmark points on the mandible were then reproduced by integrating the kinematic data of mandibular movements with the anatomical data of maxillofacial structures. Lastly, 3D surface images of the upper dentition with the surrounding maxillofacial structures were transferred to each of the motion capture images to reproduce mandibular movements relative to the maxilla. We also performed electromyography (EMG) of masticatory muscles associated with mandibular movements.
Results
The developed system could reproduce the 3D movement trajectories of arbitrary points on the mandible, such as incisor, molars and condylar points with high accuracy and could visualize dynamic transitions of occlusal contacts between upper and lower teeth associated with mandibular movements.
Conclusions
The proposed system has potential to elucidate the mechanisms underlying motor coordination of masticatory muscles and to clarify their roles during mastication by taking advantage of the capability to record EMG data synchronously with mandibular movements. Such insights will enhance our understanding of the pathogenesis and diagnosis of oral motor disorders by allowing comparisons between normal mice and genetically modified mice with oral behavioral dysfunctions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer