It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the present study, the conversion of tea waste biomass was carried via carbonization at high temperature and further used as starting material to produce graphene oxide (GO). The oxidation and exfoliation of graphitized carbon was successfully achieved using modified Hummer’s method. The as synthesized GO have been loaded with titanium dioxide (TiO2) using hydrothermal method to produce nanocomposite of rGO/TIO2. The prepared nanocomposites were characterized by means of XRD, FTIR, Raman and FESEM analysis. The evaluation for rGO/TIO2 nanocomposite photocatalytic activity was carried out based on degradation of methyl orange (MO) under the ultraviolet (UV) light irradiation. Results obtained using FTIR results revealed the successful oxidation of graphitized carbon with the presence of carboxyl and hydroxyl group. FESEM images suggested the changes of surface morphology from graphite flakes structure into few layers of graphene sheets. Therefore, it can be indicated that tea waste suitable to be sustainable alternative of graphite for the synthesis of GO. Moreover, GO obtained has immense potential for degradation of various water pollutions. Photocatalytic activity experiment inferred that the importance of optimum ratio between reduce GO to TiO2 materials which can resulted in difference in the degradation efficiency; rGO/TiO2 1:8 > rGO/TiO2 1:4 > TiO2 > rGO/TiO2 1:6 > rGO/TiO2 1:10.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2 Department of Physics, Faculty of Science, Universiti Pendidikan Sultan Idris 35900, Tanjung Malim, Perak, Malaysia
3 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia