It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Single crystalline cubic sesquioxide bixbyite α-Mn2O3 nanorods have been synthesized successfully by a simple, low cost, environmental benign hydrothermal route. As synthesized γ-MnOOH were calcined at 600 °C to obtain α-Mn2O3 nanorods, which were further subjected to various characterizations. The alpha manganese sesquioxide cubic bixbyite-type oxide formation was confirmed by the XRD studies. The surface morphology and elemental analysis were explored by SEM with EDX studies, respectively. High-resolution transmission electron microscopy HRTEM and SAED showed that the α-Mn2O3 nanorods were single crystalline and were grown along the C-axis of the crystal plane. The UV–visible spectrum indicated that the absorption was prominent in the ultraviolet region. In addition, PL spectrum result of α-Mn2O3 nanorods recommended possible photocatalytic applications. The photocatalyst ensures a new platform for the decolorization of dye molecules of the harmful cationic dyes like methylene blue and rhodamine B. Possible growth mechanism and photocatalytic dye degradation mechanism were proposed for synthesized α-Mn2O3 nanorods.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632 014, India
2 Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore - 632 014, India
3 Multi-functional Nanocatalyst & Coatings Group, SPECIFIC, College of Engineering, Swansea University (Bay Campus), Swansea, SA1 8EN Wales, United Kingdom