It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The data detector for future wireless system needs to achieve high throughput and low bit error rate (BER) with low computational complexity. In this paper, we propose a deep neural networks (DNNs) learning aided iterative detection algorithm. We first propose a convex optimization-based method for calculating the efficient detection of iterative soft output data, and then propose a method for adjusting the iteration parameters using the powerful data driven by DNNs, which achieves fast convergence and strong robustness. The results show that the proposed method can achieve the same performance as the known algorithm at a lower computation complexity cost.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer