Abstract

时空插值方法被广泛应用于缺失时空数据集的插值与估计。时空插值是时空建模与分析的一个重要内容,当前该研究关注的热点之一是异质条件下的时空插值与估计问题。因此,本文从时空数据的异质性出发,提出了一种顾及时空异质性的缺失数据时空插值方法。该方法首先对数据集进行时空分区,然后分别在时间和空间按照异质协方差模型计算缺失数据的估计值,进而利用相关系数确定时空权重、融合时间和空间估计值得到缺失数据的最终估计结果。最后通过两组气象数据集进行交叉验证对比分析试验。试验结果表明本文方法对比其他插值方法具有更高的精度和适用性。

Alternate abstract:

Space-time interpolation is widely used to estimate missing data in a dataset integrating both spatial and temporal records. Although space-time interpolation plays a key role in space-time modeling, it is still challenging to model heterogeneity of space-time data in the interpolation model.To overcome this limitation, in this study, a novel space-time interpolation method based on spatio-temporal heterogeneity is proposed to estimate missing data of space-time datasets. Firstly, space partitioning and time slicing of space-time data was implemented. Then the estimates of missing data are computed using space-time surrounding records with heterogeneous spatio-temporal covariance model.Further the weights of space and time are determined using the correlation coefficient and the finally estimates of missing data is combined integrating time and space estimates. Finally, two datasets are selected to verify the accuracy of this method. Experimental results show that the proposed method outperforms the four state-of-the-art methods with higher accuracy and applicability.

Details

Title
顾及时空异质性的缺失数据时空插值方法
Author
樊子德; 龚健雅; 刘博; 李佳霖; 邓敏
Pages
458-465
Publication year
2016
Publication date
Apr 2016
Publisher
Surveying and Mapping Press
ISSN
10011595
Source type
Scholarly Journal
Language of publication
English; Chinese
ProQuest document ID
2583986944
Copyright
© Apr 2016. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.