Full text

Turn on search term navigation

© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study develops a neural-network-based approach for emulating high-resolution modeled precipitation data with comparable statistical properties but at greatly reduced computational cost. The key idea is to use combination of low- and high-resolution simulations (that differ not only in spatial resolution but also in geospatial patterns) to train a neural network to map from the former to the latter. Specifically, we define two types of CNNs, one that stacks variables directly and one that encodes each variable before stacking, and we train each CNN type both with a conventional loss function, such as mean square error (MSE), and with a conditional generative adversarial network (CGAN), for a total of four CNN variants. We compare the four new CNN-derived high-resolution precipitation results with precipitation generated from original high-resolution simulations, a bilinear interpolater and the state-of-the-art CNN-based super-resolution (SR) technique. Results show that the SR technique produces results similar to those of the bilinear interpolator with smoother spatial and temporal distributions and smaller data variabilities and extremes than the original high-resolution simulations. While the new CNNs trained by MSE generate better results over some regions than the interpolator and SR technique do, their predictions are still biased from the original high-resolution simulations. The CNNs trained by CGAN generate more realistic and physically reasonable results, better capturing not only data variability in time and space but also extremes such as intense and long-lasting storms. The new proposed CNN-based downscaling approach can downscale precipitation from 50 to 12 km in 14 min for 30 years once the network is trained (training takes 4 h using 1 GPU), while the conventional dynamical downscaling would take 1 month using 600 CPU cores to generate simulations at the resolution of 12 km over the contiguous United States.

Details

Title
Fast and accurate learned multiresolution dynamical downscaling for precipitation
Author
Wang, Jiali 1 ; Liu, Zhengchun 2   VIAFID ORCID Logo  ; Foster, Ian 2   VIAFID ORCID Logo  ; Chang, Won 3 ; Kettimuthu, Rajkumar 2 ; V Rao Kotamarthi 1   VIAFID ORCID Logo 

 Environmental Science Division, Argonne National Laboratory, Lemont, IL, USA 
 Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, USA 
 Division of Statistics and Data Science, University of Cincinnati, Cincinnati, OH, USA 
Pages
6355-6372
Publication year
2021
Publication date
2021
Publisher
Copernicus GmbH
ISSN
1991962X
e-ISSN
19919603
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584213611
Copyright
© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.