Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Previous research found that FATP1 plays an important role in the regulation of fatty acid metabolism and lipid accumulation in pig and chicken, but its function has not been explored in bovine adipocyte yet. In this study, we investigated the effect of FATP1 expression on preadipocyte differentiation in Qinchuan cattle using overexpression and interference assays. Our results reveal that FATP1 overexpression promoted preadipocyte differentiation, lipid droplet formation, and the expression of LPL and PPARγ, while FATP1 interference had the opposite effects on adipocyte differentiation and fat deposition. Following FATP1 overexpression and FATP1 interference in adipocytes, RNA-seq analysis identified that SLPI, STC1, SEMA6A, TNFRSF19, SLN, PTGS2, ADCYP1, FADS2, and SCD genes were differentially expressed. Pathway analysis revealed that the PPAR signaling pathway, AMPK signal pathway, and Insulin signaling pathway were enriched with differentially expressed genes. We propose that the FATP1 gene may affect the beef quality by involving adipocyte differentiation and lipid deposition, and may shed new light on the formation mechanisms of adipose tissues.

Abstract

FATP1 plays an important role in the regulation of fatty acid metabolism and lipid accumulation. In this study, we investigated the patterns of FATP1 expression in various tissues obtained from calf and adult Qinchuan cattle, and in differentiating adipocytes. Next, we investigated the effect of FATP1 expression on preadipocyte differentiation in Qinchuan cattle using overexpression and interference assays. We also identified the differentially expressed genes (DEGs) and pathways associated with FATP1 overexpression/interference. Our results reveal that FATP1 was broadly expressed in heart, kidney, muscle, small intestine, large intestine, and perirenal fat tissues. While FATP1 overexpression promoted preadipocyte differentiation, fat deposition, and the expression of several genes involved in fat metabolism, FATP1 interference had the opposite effects on adipocyte differentiation. Following FATP1 overexpression and FATP1 interference in adipocytes, RNA-seq analysis was performed to identify DEGs related to fat metabolism. The DEGs identified include SLPI, STC1, SEMA6A, TNFRSF19, SLN, PTGS2, ADCYP1, FADS2, and SCD. Pathway analysis revealed that the DEGs were enriched in the PPAR signaling pathway, AMPK signal pathway, and Insulin signaling pathway. Our results provide an in-depth understanding of the function and regulation mechanism of FAPT1 in fat metabolism.

Details

Title
The Effect of FATP1 on Adipocyte Differentiation in Qinchuan Beef Cattle
Author
Liu, Xuchun 1 ; Li, Shijun 1 ; Wang, Liyun 1 ; Zhang, Weiyi 1 ; Wang, Yujuan 1 ; Gui, Linsheng 2 ; Linsen Zan 1 ; Zhao, Chunping 1 

 College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; [email protected] (X.L.); [email protected] (S.L.); [email protected] (L.W.); [email protected] (W.Z.); [email protected] (Y.W.); [email protected] (L.Z.) 
 College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; [email protected] 
First page
2789
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584303897
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.