Full Text

Turn on search term navigation

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, we present a fully automatic solution for denoting bone configuration on two-dimensional images. A dataset of 300 X-ray images of children’s knee joints was collected. The strict experimental protocol established in this study increased the difficulty of post-processing. Therefore, we tackled the problem of obtaining reliable information from medical image data of insufficient quality. We proposed a set of features that unambiguously denoted configuration of the bone on the image, namely the femur. It was crucial to define the features that were independent of age, since age variability of subjects was high. Subsequently, we defined image keypoints directly corresponding to those features. Their positions were used to determine the coordinate system denoting femur configuration. A complex keypoint detector was proposed, composed of two different estimator architectures: gradient-based and based on the convolutional neural network. The positions of the keypoints were used to determine the configuration of the femur on each image frame. The overall performance of both estimators working in parallel was evaluated using X-ray images from the publicly available LERA dataset.

Details

Title
Detection of Pediatric Femur Configuration on X-ray Images
Author
Drążkowska, Marta  VIAFID ORCID Logo 
First page
9538
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584315088
Copyright
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.