Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the assembly of biological networks it is important to provide reliable interactions in an effort to have the most possible accurate representation of real-life systems. Commonly, the data used to build a network comes from diverse high-throughput essays, however most of the interaction data is available through scientific literature. This has become a challenge with the notable increase in scientific literature being published, as it is hard for human curators to track all recent discoveries without using efficient tools to help them identify these interactions in an automatic way. This can be surpassed by using text mining approaches which are capable of extracting knowledge from scientific documents. One of the most important tasks in text mining for biological network building is relation extraction, which identifies relations between the entities of interest. Many interaction databases already use text mining systems, and the development of these tools will lead to more reliable networks, as well as the possibility to personalize the networks by selecting the desired relations. This review will focus on different approaches of automatic information extraction from biomedical text that can be used to enhance existing networks or create new ones, such as deep learning state-of-the-art approaches, focusing on cancer disease as a case-study.

Details

Title
Text Mining for Building Biomedical Networks Using Cancer as a Case Study
Author
Conceição, Sofia I R  VIAFID ORCID Logo  ; Couto, Francisco M  VIAFID ORCID Logo 
First page
1430
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
2218273X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584325386
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.