Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

There is increasing evidence to suggest that microcirculation becomes dysfunctional earlier than large blood vessels or the heart in several diseases. In diabetes mellitus, a disease characterized by chronic hyperglycemia, microvascular impairment is well-established; on the contrary, the effect of acute hyperglycemia in microcirculation remains unclarified. Our aim was to investigate the microvascular effect of an oral glucose load (OGL) using laser Doppler flowmetry (LDF) as a perfusion quantification technique, coupled with wavelet transform (WT) to perform a spectral decomposition of the LDF signal. On two distinct occasions (pre-load and post-load), sixteen healthy subjects drank either a standard glucose solution or water. Perfusion was assessed by LDF and WT while resting and during post-occlusive reactive hyperemia (PORH), evoked by a transient three-min occlusion of the brachial artery, in the forearm and the finger pulp. The OGL affected microcirculation in both sites compared to water, significantly blunting the PORH response in the forearm. The WT revealed significant differences in the cardiac and sympathetic components after OGL between the pre-load and post-load periods. These results suggest that an OGL induces a short-term subtle microvascular impairment, probably involving a modulation of the sympathetic nervous system.

Abstract

Microcirculation in vivo has been assessed using non-invasive technologies such as laser Doppler flowmetry (LDF). In contrast to chronic hyperglycemia, known to induce microvascular dysfunction, the effects of short-term elevations in blood glucose on microcirculation are controversial. We aimed to assess the impact of an oral glucose load (OGL) on the cutaneous microcirculation of healthy subjects, quantified by LDF and coupled with wavelet transform (WT) as an interpretation tool. On two separate occasions, sixteen subjects drank either a glucose solution (75 g in 250 mL water) or water (equal volume). LDF signals were obtained in two anatomical sites (forearm and finger pulp) before and after each load (pre-load and post-load, respectively), in resting conditions and during post-occlusive reactive hyperemia (PORH). The WT allowed decomposition of the LDF signals into their spectral components (cardiac, respiratory, myogenic, sympathetic, endothelial NO-dependent). The OGL blunted the PORH response in the forearm, which was not observed with the water load. Significant differences were found for the cardiac and sympathetic components in the glucose and water groups between the pre-load and post-load periods. These results suggest that an OGL induces a short-term subtle microvascular impairment, probably involving a modulation of the sympathetic nervous system.

Details

Title
Oral Glucose Load and Human Cutaneous Microcirculation: An Insight into Flowmotion Assessed by Wavelet Transform
Author
Silva, Henrique 1   VIAFID ORCID Logo  ; Šorli, Jernej 2   VIAFID ORCID Logo  ; Lenasi, Helena 2 

 Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; [email protected]; Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Biophysics and Biomedical Engineering Institute (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal 
 Institute of Physiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; [email protected] 
First page
953
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20797737
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584331981
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.