Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Effects of plant proteins and dietary fibers on the physical properties of stirred soy yogurt were investigated. Buffering capacity against lactic acid was not affected by the protein concentration for any of the four proteins that were examined: isolate soy protein (ISP), pea protein (PP), rice protein (RP), and almond protein (AP). Three proteins other than AP exhibited an increase in buffering capacity (dB/dPH) following a physical treatment, whereas AP saw a decrease in buffering capacity. Furthermore, physically treated PP revealed a significant increase in viscosity, reaching up to 497 cp in the pH 6.0~6.2 range during the titration process. Following fermentation, PP produced the highest viscosity and coagulum strength with no syneresis. In the case of dietary fiber, Acacia Fiber (AF) was completely dissolved in the solvent and did not affect the physical properties of the fermented coagulum. Soy fiber (SF) was also not suitable for fermented milk processes because precipitation occurred after the physical treatment. In the case of citrus fiber (CF), however, syneresis did not occur during storage after the physical treatment, and the viscosity also increased up to 2873 cP. Consequently, PP and CF were deemed to be a suitable plant protein and dietary fiber for stirred soy yogurt, respectively.

Details

Title
Applicable Plant Proteins and Dietary Fibers for Simulate Plant-Based Yogurts
Author
Jae-Sung, Shin 1 ; Kim, Beom-Hee 2 ; Baik, Moo-Yeol 2   VIAFID ORCID Logo 

 Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Korea; [email protected] (J.-S.S.); [email protected] (B.-H.K.); Corporate Technology Office, Pulmuone Corp., Cheongju 28614, Korea 
 Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Korea; [email protected] (J.-S.S.); [email protected] (B.-H.K.) 
First page
2305
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584384790
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.