Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

In this study, we obtained a chromosome-scale assembly genome of Apis cerana abansis, which lives in the southeastern margin of the Titan Plateau, by using PacBio, Illumina and high-throughput chromatin conformation capture (Hi-C) sequencing technologies. With a more comprehensive annotation pipeline, we obtained an ampler and more accurate Apis cerana genome than previous studies. Comparative genomic analysis was performed to identify the divergence among different A. cerana genomes by studying two aspects: the differential content of repeat content and the gene loss/gain events occurred in chemosensory receptors and immune-related proteins. Our results show that the content of repetitive sequences differ in types and quantity among four A. cerana strains; the gene loss/gain events in chemoreceptor- and immune-related proteins occur in different A. cerana strains, especially in A. cerana abansis (Aba strain). Specifically, while compared with the other three published genomes, the Aba strain contains the largest number of repeat contents and loses the largest number of both chemosensory-receptor- and immune-related proteins, as well as subfamilies, whereas the Baisha strain contains the largest number of chemoreceptor- and immune-related proteins. We hypothesized that gene loss/gain may be evolutionary strategies used by the different A. cerana strains to adapt to their respective environments.

Abstract

Apis cerana abansis, widely distributed in the southeastern margin of the Qinghai-Tibet Plateau, is considered an excellent model to study the phenotype and genetic variation for highland adaptation of Asian honeybee. Herein, we assembled and annotated the chromosome-scale assembly genome of A. cerana abansis with the help of PacBio, Illumina and Hi-C sequencing technologies in order to identify the genome differences between the A. cerana abansis and the published genomes of different A. cerana strains. The sequencing methods, assembly and annotation strategies of A. cerana abansis were more comprehensive than previously published A. cerana genomes. Then, the intraspecific genetic diversity of A. cerana was revealed at the genomic level. We re-identified the repeat content in the genome of A. cerana abansis, as well as the other three A. cerana strains. The chemosensory and immune-related proteins in different A. cerana strains were carefully re-identified, so that 132 odorant receptor subfamilies, 12 gustatory receptor subfamilies and 22 immune-related pathways were found. We also discovered that, compared with other published genomes, the A. cerana abansis lost the largest number of chemoreceptors compared to other strains, and hypothesized that gene loss/gain might help different A. cerana strains to adapt to their respective environments. Our work contains more complete and precise assembly and annotation results for the A. cerana genome, thus providing a resource for subsequent in-depth related studies.

Details

Title
De Novo Genome Assembly of Chinese Plateau Honeybee Unravels Intraspecies Genetic Diversity in the Eastern Honeybee, Apis cerana
Author
Lan, Lan 1 ; Shi, Peng 1 ; Song, Huali 1 ; Tang, Xiangyou 1 ; Zhou, Jianyang 1 ; Yang, Jiandong 2 ; Yang, Mingxian 2 ; Xu, Jinshang 1   VIAFID ORCID Logo 

 College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; [email protected] (L.L.); [email protected] (P.S.); [email protected] (H.S.); [email protected] (X.T.); [email protected] (J.Z.); Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing 401331, China 
 College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, China; [email protected] (J.Y.); [email protected] (M.Y.) 
First page
891
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20754450
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584404539
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.