It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Glucose monitoring sensors with high softness and flexibility are critical for the developments of wearable and implantable healthcare devices that enable diagnosis, prognosis, and management of diabetes. The design and implementation of such sensors have been extensively exploited by electrochemical strategies, which, however, suffer from poor reusability and complex modification procedures, and necessitate frequent calibration or sensor replacement due to enzymatic reaction instability. Here, a soft and plasmonic hydrogel optical sensor is created for quantitative and continuous glucose monitoring under physiological conditions. The optical sensor consists of a flexible optical fiber made from composites of gold nanoparticles and glucose-responsive hydrogels. The reversible binding of glucose to the nanocomposite optical fiber results in dynamic volume expansion of the hydrogel matrix, which modulates the localized surface plasmon resonance effect, enabling glucose to be quantified from the light transmission. To achieve robust readout, a dual-wavelength differential approach is employed to endow the sensor with self calibration capability. We show that the sensor is reversible and reusable for detecting physiological glucose levels with high linearity and negligible hysteresis. The soft and flexible glucose sensor holds great promises of serving as a minimally-invasive probe for point-of-care glucose monitoring in clinics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China
2 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
3 Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China





