Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the design of cantilevered balconies of buildings, many stability problems exist concerning vertical plates, in which reaching a critical load plays an important role during the stability analysis of the plate. At the same time, the concrete forming vertical plate, as a typical brittle material, has larger compressive strength but lower tensile strength, which means the tensile and compression properties of concrete are different. However, due to the complexities of such analyses, this difference has not been considered. In this study, the variational method is used to analyze stability problems of cantilever vertical plates with bimodular effect, in which different loading conditions and plate shapes are also taken into account. For the effective implementation of a variational method, the bending strain energy based on bimodular theory is established first, and critical loads of four stability problems are obtained. The results indicate that the bimodular effect, as well as different loading types and plate shapes, have influences on the final critical loads, resulting in varying degrees of buckling. In particular, if the average value of the tensile modulus and compressive modulus remain unchanged, the introduction of the bimodular effect will weaken, to some extent, the bending stiffness of the plate. Among the four stability problems, a rectangular plate with its top and bottom loaded is most likely to buckle; next is a rectangular plate with its top loaded, followed by a triangular plate with its bottom loaded. A rectangular plate with its bottom loaded is least likely to buckle. This work may serve as a theoretical reference for the refined analysis of vertical plates. Plates are made of concrete or similar material whose bimodular effect is relatively obvious and cannot be ignored arbitrarily; otherwise the greater inaccuracies will be encountered in building designs.

Details

Title
Application of Variational Method to Stability Analysis of Cantilever Vertical Plates with Bimodular Effect
Author
Xuan-Yi, Xue 1 ; Da-Wei, Du 1 ; Jun-Yi, Sun 2   VIAFID ORCID Logo  ; Xiao-Ting, He 2   VIAFID ORCID Logo 

 School of Civil Engineering, Chongqing University, Chongqing 400045, China; [email protected] (X.-Y.X.); [email protected] (D.-W.D.); [email protected] (J.-Y.S.) 
 School of Civil Engineering, Chongqing University, Chongqing 400045, China; [email protected] (X.-Y.X.); [email protected] (D.-W.D.); [email protected] (J.-Y.S.); Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China 
First page
6129
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584449147
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.