Full text

Turn on search term navigation

© 2012. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Purpose

Anterior spinal stapling for the treatment of adolescent idiopathic scoliosis has been shown to slow progression in small curves; however, its role in larger curves remains unclear. The purpose of this study was to evaluate the effectiveness of nitinol staples to modulate spinal growth by evaluating the two-dimensional and three-dimensional morphological and histological effects of this method in a well-established porcine model.

Methods

Three immature Yucatan miniature pigs underwent intervertebral stapling. Two staples spanned each of three consecutive mid-thoracic discs and epiphyses. Monthly radiographs were obtained. Computed tomography (CT) was conducted at harvest after 6 months of growth. Measurements of wedging and height for each disc and vertebral body were conducted. Micro CT was used to compare physeal closure between stapled and non-stapled levels. Histology of the growth plate also compared the hypertrophic zone thickness for control and stapled vertebrae.

Results

After 6 months of stapled growth, the average coronal Cobb angle of the stapled segments increased by 7.7 ± 2.0° and kyphosis increased by 3.3 ± 0.6° compared to preoperative curves. Increased vertebral wedging and decreased disc height (p < 0.001) were noted in stapled regions. Overall, 26 ± 23 % of each growth plate was closed in the stapled segments, with 6 ± 8 % closure in the unstapled levels. No difference was observed regarding the hypertrophic zone height when comparing instrumented to uninstrumented levels, nor was a difference recognized when comparing right versus left regions within stapled levels alone.

Conclusions

Six months of nitinol intervertebral stapling created a mild coronal and sagittal deformity associated with reduced vertebral and disc height, and increased coronal vertebral and sagittal disc wedging.

Details

Title
The modulation of spinal growth with nitinol intervertebral stapling in an established swine model
Author
Carreau, Joseph H; Farnsworth, Christine L; Glaser, Diana A; Doan, Joshua D; Bastrom, Tracey; Bryan, Nathan; Newton, Peter O
Pages
241-253
Section
Basic Science
Publication year
2012
Publication date
Jul 2012
Publisher
Sage Publications Ltd.
ISSN
18632521
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584450247
Copyright
© 2012. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.