Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to improve the benefit–risk ratio of pharmacokinetic (PK) research in the early development of new drugs, in silico and in vitro methods were constructed and improved. Models of intrinsic clearance rate (CLint) were constructed based on the quantitative structure–activity relationship (QSAR) of 7882 collected compounds. Moreover, a novel in vitro metabolic method, the Bio-PK dynamic metabolic system, was constructed and combined with a physiology-based pharmacokinetic model (PBPK) model to predict the metabolism and the drug–drug interaction (DDI) of azidothymidine (AZT) and fluconazole (FCZ) mediated by the phase II metabolic enzyme UDP-glycosyltransferase (UGT) in humans. Compared with the QSAR models reported previously, the goodness of fit of our CLint model was slightly improved (determination coefficient (R2) = 0.58 vs. 0.25–0.45). Meanwhile, compared with the predicted clearance of 61.96 L/h (fold error: 2.95–3.13) using CLint (8 µL/min/mg) from traditional microsomal experiment, the predicted clearance using CLint (25 μL/min/mg) from Bio-PK system was increased to 143.26 L/h (fold error: 1.27–1.36). The predicted Cmax and AUC (the area under the concentration–time curve) ratio were 1.32 and 1.84 (fold error: 1.36 and 1.05) in a DDI study with an inhibition coefficient (Ki) of 13.97 μM from the Bio-PK system. The results indicate that the Bio-PK system more truly reflects the dynamic metabolism and DDI of AZT and FCZ in the body. In summary, the novel in silico and in vitro method may provide new ideas for the optimization of drug metabolism and DDI research methods in early drug development.

Details

Title
A Novel Method for Predicting the Human Inherent Clearance and Its Application in the Study of the Pharmacokinetics and Drug–Drug Interaction between Azidothymidine and Fluconazole Mediated by UGT Enzyme
Author
Yuan, Yawen 1 ; Zhang, Jun 2 ; Fang, Boyu 2 ; Xiang, Xiaoqiang 2   VIAFID ORCID Logo  ; Guo, Ma 2 ; Zhang, Shunguo 3 ; Zhu, Bin 4 ; Cai, Weimin 2 

 Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai 201203, China; [email protected] (Y.Y.); [email protected] (J.Z.); [email protected] (B.F.); [email protected] (X.X.); [email protected] (G.M.); Shanghai Children’s Medical Center, Pharmacy Department, Shanghai 200127, China; [email protected] 
 Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai 201203, China; [email protected] (Y.Y.); [email protected] (J.Z.); [email protected] (B.F.); [email protected] (X.X.); [email protected] (G.M.) 
 Shanghai Children’s Medical Center, Pharmacy Department, Shanghai 200127, China; [email protected] 
 Shanghai BaiO Technology Company, Shanghai 200233, China 
First page
1734
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584453564
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.