Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Steel quality and properties can be affected by the formation of complex inclusions, including Ti-based inclusions such as TiN and Ti2O3 and oxides like Al2O3 and MgO·Al2O3 (MA). This study assessed the prospective use of Raman spectroscopy to characterize synthetic binary inclusion samples of TiN–Al2O3, TiN–MA, Ti2O3–MA, and Ti2O3–Al2O3 with varying phase fractions. The relative intensities of the Raman peaks were used for qualitative evaluation and linear regression calibration models were used for the quantitative prediction of individual phases. The model performance was evaluated with root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP). For the raw Raman spectra data, R2 values were between 0.48–0.98, the RMSECV values varied between 3.26–14.60 wt%, and the RMSEP ranged between 2.98–15.01 wt% for estimating the phases. The SNV Raman spectra data had estimated R2 values within 0.94–0.99 and RMSECV and RMSEP values ranged between 2.50–3.26 wt% and 2.80–9.01 wt%, respectively, showing improved model performance. The study shows that the specific phases of TiN, Al2O3, MA, and Ti2O3 in synthetic inclusion mixtures of TiN–(Al2O3 or MA) and Ti2O3–(Al2O3 or MA) could be characterized by the Raman spectroscopy.

Details

Title
Characterization of Synthetic Non-Metallic Inclusions Consisting of TiN, Ti2O3, and Oxides of Al2O3 and MgO·Al2O3 Spinel Using Raman Spectroscopy
Author
Gyakwaa, Francis 1   VIAFID ORCID Logo  ; Alatarvas, Tuomas 1   VIAFID ORCID Logo  ; Shu, Qifeng 1   VIAFID ORCID Logo  ; Aula, Matti 2 ; Fabritius, Timo 1   VIAFID ORCID Logo 

 Process Metallurgy Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland; [email protected] (T.A.); [email protected] (Q.S.); [email protected] (M.A.); [email protected] (T.F.) 
 Process Metallurgy Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland; [email protected] (T.A.); [email protected] (Q.S.); [email protected] (M.A.); [email protected] (T.F.); Luxmet Ltd., Paavo Havaksen tie 5 D, FI-90570 Oulu, Finland 
First page
1549
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584463405
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.