Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the context of an aging population, unhealthy Western lifestyle, and the lack of an optimal surgical treatment, deep osteochondral defects pose a great challenge for the public health system. Biodegradable, biomimetic scaffolds seem to be a promising solution. In this study we investigated the biocompatibility of porous poly-((D,L)-lactide-ε-caprolactone)dimethacrylate (LCM) scaffolds in contrast to compact LCM scaffolds and blank cell culture plastic. Thus, morphology, cytotoxicity and metabolic activity of human mesenchymal stromal cells (MSC) seeded directly on the materials were analyzed after three and six days of culturing. Further, osteoclastogenesis and osteoclastic activity were assessed using reverse-transcriptase real-time PCR of osteoclast-specific genes, EIA and morphologic aspects after four, eight, and twelve days. LCM scaffolds did not display cytotoxic effects on MSC. After three days, metabolic activity of MSC was enhanced on 3D porous scaffolds (PS) compared to 2D compact scaffolds (CS). Osteoclast activity seemed to be reduced at PS compared to cell culture plastic at all time points, while no differences in osteoclastogenesis were detectable between the materials. These results indicate a good cytocompatibility of LCM scaffolds. Interestingly, porous 3D structure induced higher metabolic activity of MSC as well as reduced osteoclast activity.

Details

Title
Porous 3D Scaffolds Enhance MSC Vitality and Reduce Osteoclast Activity
Author
Spreda, Miriam 1 ; Hauptmann, Nicole 2 ; Lehner, Veronika 1 ; Biehl, Christoph 3   VIAFID ORCID Logo  ; Liefeith, Klaus 2 ; Lips, Katrin Susanne 1   VIAFID ORCID Logo 

 Experimental Trauma Surgery, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany; [email protected] (M.S.); [email protected] (V.L.) 
 Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, 37308 Heilbad Heiligenstadt, Germany; [email protected] (N.H.); [email protected] (K.L.) 
 Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Strasse 7, 35392 Giessen, Germany; [email protected] 
First page
6258
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584463968
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.