Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nanoparticle drug delivery vehicles introduce multiple pharmacokinetic processes, with the delivery, accumulation, and stability of the therapeutic molecule influenced by nanoscale processes. Therefore, considering the complexity of the multiple interactions, the use of data-driven models has critical importance in understanding the interplay between controlling processes. We demonstrate data simulation techniques to reproduce the time-dependent dose of trimethyl chitosan nanoparticles in an ND7/23 neuronal cell line, used as an in vitro model of native peripheral sensory neurons. Derived analytical expressions of the mean dose per cell accurately capture the pharmacokinetics by including a declining delivery rate and an intracellular particle degradation process. Comparison with experiment indicates a supply time constant, τ = 2 h. and a degradation rate constant, b = 0.71 h−1. Modeling the dose heterogeneity uses simulated data distributions, with time dependence incorporated by transforming data-bin values. The simulations mimic the dynamic nature of cell-to-cell dose variation and explain the observed trend of increasing numbers of high-dose cells at early time points, followed by a shift in distribution peak to lower dose between 4 to 8 h and a static dose profile beyond 8 h.

Details

Title
Data-Driven Modeling of the Cellular Pharmacokinetics of Degradable Chitosan-Based Nanoparticles
Author
Summers, Huw D 1   VIAFID ORCID Logo  ; Gomes, Carla P 2 ; Varela-Moreira, Aida 3 ; Spencer, Ana P 2   VIAFID ORCID Logo  ; Gomez-Lazaro, Maria 3   VIAFID ORCID Logo  ; Pêgo, Ana P 4 ; Rees, Paul 1 

 Department of Biomedical Engineering, Swansea University, Swansea SA1 8QQ, UK; [email protected] 
 i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; [email protected] (C.P.G.); [email protected] (A.V.-M.); [email protected] (A.P.S.); [email protected] (M.G.-L.); [email protected] (A.P.P.); Instituto de Engenharia Biomédica INEB, Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), Universidade do Porto, 4200-465 Porto, Portugal 
 i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; [email protected] (C.P.G.); [email protected] (A.V.-M.); [email protected] (A.P.S.); [email protected] (M.G.-L.); [email protected] (A.P.P.); Instituto de Engenharia Biomédica INEB, Universidade do Porto, 4200-135 Porto, Portugal 
 i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; [email protected] (C.P.G.); [email protected] (A.V.-M.); [email protected] (A.P.S.); [email protected] (M.G.-L.); [email protected] (A.P.P.); Instituto de Engenharia Biomédica INEB, Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), Universidade do Porto, 4200-465 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal 
First page
2606
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584479496
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.