Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Terrestrial laser scanning (TLS) can obtain tree point clouds with high precision and high density. The efficient classification of wood points and leaf points is essential for the study of tree structural parameters and ecological characteristics. Using both intensity and geometric information, we present an automated wood–leaf classification with a three-step classification and wood point verification. The tree point cloud was classified into wood points and leaf points using intensity threshold, neighborhood density and voxelization successively, and was then verified. Twenty-four willow trees were scanned using the RIEGL VZ-400 scanner. Our results were compared with the manual classification results. To evaluate the classification accuracy, three indicators were introduced into the experiment: overall accuracy (OA), Kappa coefficient (Kappa), and Matthews correlation coefficient (MCC). The ranges of OA, Kappa, and MCC of our results were from 0.9167 to 0.9872, 0.7276 to 0.9191, and 0.7544 to 0.9211, respectively. The average values of OA, Kappa, and MCC were 0.9550, 0.8547, and 0.8627, respectively. The time costs of our method and another were also recorded to evaluate the efficiency. The average processing time was 1.4 s per million points for our method. The results show that our method represents a potential wood–leaf classification technique with the characteristics of automation, high speed, and good accuracy.

Details

Title
Wood–Leaf Classification of Tree Point Cloud Based on Intensity and Geometric Information
Author
Sun, Jingqian 1 ; Wang, Pei 1   VIAFID ORCID Logo  ; Gao, Zhiyong 2 ; Liu, Zichu 1 ; Li, Yaxin 1 ; Gan, Xiaozheng 1 ; Liu, Zhongnan 1 

 School of Science, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China; [email protected] (J.S.); [email protected] (Z.L.); [email protected] (Y.L.); [email protected] (X.G.); [email protected] (Z.L.) 
 Research Institute of Petroleum Exploration and Development, Petrochina, Beijing 100083, China; [email protected] 
First page
4050
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584507533
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.