Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, we aimed to investigate the hydrological performance of three gridded precipitation products—CHIRPS, RFE, and TRMM3B42V7—in monthly streamflow forecasting. After statistical evaluation, two monthly streamflow forecasting models—support vector machine (SVM) and artificial neural network (ANN)—were developed using the monthly temporal resolution data derived from these products. The hydrological performance of the developed forecasting models was then evaluated using several statistical indices, including NSE, MAE, RMSE, and R2. The performance measures confirmed that the CHIRPS product has superior performance compared to RFE 2.0 and TRMM data, and it could provide reliable rainfall estimates for use as input in forecasting models. Likewise, the results of the forecasting models confirmed that the ANN and SVM both achieved acceptable levels of accuracy for forecasting streamflow; however, the ANN model was superior (R2 = 0.898–0.735) to the SVM (R2 = 0.742–0.635) in both the training and testing periods.

Details

Title
Remote-Sensing-Based Streamflow Forecasting Using Artificial Neural Network and Support Vector Machine Models
Author
Alquraish, Mohammed M 1 ; Khadr, Mosaad 2   VIAFID ORCID Logo 

 Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 61922, Saudi Arabia; [email protected] 
 Department of Civil Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 61922, Saudi Arabia; Department of Irrigation and Hydraulic Engineering, Faculty of Engineering, Tanta University, Tanat 31733, Egypt 
First page
4147
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584522975
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.