It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The work presents results obtained during spectroscopic observations of nitrogen DC flowing post-discharges at the total gas pressure of 1000 Pa and at the discharge current of 100 mA. Mercury traces were introduced into the system using auxiliary pure nitrogen flow enriched by mercury vapor. A very low mercury concentration of 3.7 ppb was introduced into the system before the active discharge. The strong quenching of nitrogen pink afterglow was observed but no mercury lines were recorded. Moreover, the vibrational distributions of nitrogen excited states were nearly unchanged. Based on these results, the new experimental set up was created. The introduction point of mercury vapor with higher concentration of 600 ppm was movable during the post discharge up to decay time of 40 ms. Besides three nitrogen spectral systems (first and second positive and first negative), NOβ and NOγ bands, the mercury line at 254 nm was recorded at these conditions. Its intensity was dependent on the mercury vapor introduction position as well as on the mercury concentration. No other mercury lines were observed. The creation of mercury 3P1 state that is the upper state of the observed mercury spectral line is possible by the resonance excitation energy transfer form vibrationally excited nitrogen ground state N2(X1Σ+g, v &equal; 19). The observed results should form a background for the development of a new titration technique used for the highly vibrationally excited nitrogen ground state molecules determination.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Faculty of Chemistry, Brno University of Technology, Purkyñova 118, 612 00 Brno, Czech Republic
2 Faculty of Science, Masaryk University, Kotlárská 2, 611 37 Brno, Czech Republic