Full text

Turn on search term navigation

Copyright © 2021 Li Feng et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The traditional analysis method of train obstacle uses isomorphic sensors to obtain the state information and completes detection and identification analysis at the remote end of a network. A single data sample and more processing links will reduce the accuracy and speed analysis for subway encountering obstacles. To solve this problem, this paper proposes a subway obstacle perception and identification method based on cloud edge cooperation. The subway monitoring cloud platform realizes the training and construction of a detection model, and the network edge side completes the situation awareness of track state and real-time action when the train encounters obstacles. Firstly, the railroad track position is detected by cameras, and subway running track is identified by Mask RCNN algorithm to determine the detection area of obstacles in the process of subway train running. At the edge of network, the feature-level fusion of data collected by sensor cluster is carried out to provide reliable data support for detection work. Then, based on the DeepSort and YOLOv3 network models, the subway obstacle detection model is constructed on the subway monitoring cloud platform. Moreover, a trained model is distributed to the network edge side, so as to realize the fast and efficient perception and action of obstacles. Finally, the simulation verification is implemented based on actual collected datasets. Experimental results show that the proposed method has good detection accuracy and efficiency, which maintains 98.9% and 1.43 s for obstacle detection accuracy and recognition time in complex scenes.

Details

Title
Subway Obstacle Perception and Identification Method Based on Cloud Edge Collaboration
Author
Li, Feng 1   VIAFID ORCID Logo  ; Yan, Ronghui 1 ; Liu, Guangping 2 ; Chen, Shao 3 

 Department of Rail Transit Engineering, City College of Suzhou, Suzhou, Jiangsu, China 
 School of Urban Rail Transportation, Soochow University, Suzhou, Jiangsu, China 
 Suzhou Rail Transit Group Co., Ltd., Suzhou, Jiangsu, China 
Editor
Zhihan Lv
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
e-ISSN
15308677
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2585191933
Copyright
Copyright © 2021 Li Feng et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.