Full text

Turn on search term navigation

Copyright © 2021 C. Ambika Bhuvaneswari et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

The advent of the automated technological revolution has enabled the Internet of Things to rejuvenate, revolutionize, and redeem the services of sensors. The recent development of microsensor devices is distributed in a real-world terrestrial environment to sense various environmental changes. The energy consumption of the remotely deployed microsystems depends on its utilization efficiency. Improper utilization of sensor nodes’ heterogeneity could lead to uneven energy consumption and load imbalance across the network, which will degrade the performance of the network. The proposed heterogeneous energy and traffic aware (HETA) considers the key parameters such as delay, throughput, traffic load, energy consumption, and life span. The residual energy and a minimum distance between the base station and cluster members are taken into consideration for the cluster head selection. The probability of hitting data traffic has been utilized to analyse energy and traffic towards the base station. The role of the sensor node has been realized and priority-based data forwarding are also proposed. As a result, the heterogeneous energy and traffic aware perform well in balancing traffic towards the base station, which is analysed in terms of maximum throughput and increase in a lifetime of heterogeneous energy networks more than 5000 rounds, and the algorithm outperforms 34.5% of nodes are alive with transmissible energy. The proposed research also endorses unequal clustering and minimum energy consumption. We have modeled our proposed research using various p-type junctionless nanowire FET without doping injunctions. The materials used in this analysis were silicon (Si), germanium (Ge), indium phosphide (InP), gallium arsenide (GaAs), and Al(x)Ga(1−x)As. The dimensions of the p-type cylindrical nanowire channel were 25 nm long and 10 nm in diameter.

Details

Title
Effects of Novel Material Field Effect Transistor for Heterogeneous Energy and Traffic-Aware Secure Applications
Author
C Ambika Bhuvaneswari 1   VIAFID ORCID Logo  ; Kanmani Ruby, E D 1   VIAFID ORCID Logo  ; Manjunathan, A 2   VIAFID ORCID Logo  ; Balamurugan, R 3   VIAFID ORCID Logo  ; Jenopaul, P 4   VIAFID ORCID Logo  ; Tizazu, Belachew Zegale 5   VIAFID ORCID Logo 

 Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Chennai, Tamil Nadu, India 
 K. Ramakrishnan College of Technology, Trichy, Tamil Nadu, India 
 K. Ramakrishnan College of Engineering, Trichy, Tamil Nadu, India 
 Adi Shankara Institute of Engineering and Technology, Kalady, Kerala, India 
 Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia 
Editor
Samson Jerold Samuel Chelladurai
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
16878434
e-ISSN
16878442
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2585203335
Copyright
Copyright © 2021 C. Ambika Bhuvaneswari et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/