Abstract

The leaf area index (LAI) is one of key variable of crops which plays important role in agriculture, ecology and climate change for global circulation models to compute energy and water fluxes. In the recent research era, the machine-learning algorithms have provided accurate computational approaches for the estimation of crops biophysical parameters using remotely sensed data. The three machine-learning algorithms, random forest regression (RFR), support vector regression (SVR) and artificial neural network regression (ANNR) were used to estimate the LAI for crops in the present study. The three different dates of Landsat-8 satellite images were used during January 2017 – March 2017 at different crops growth conditions in Varanasi district, India. The sampling regions were fully covered by major Rabi season crops like wheat, barley and mustard etc. In total pooled data, 60% samples were taken for the training of the algorithms and rest 40% samples were taken as testing and validation of the machinelearning regressions algorithms. The highest sensitivity of normalized difference vegetation index (NDVI) with LAI was found using RFR algorithms (R2 = 0.884, RMSE = 0.404) as compared to SVR (R2 = 0.847, RMSE = 0.478) and ANNR (R2 = 0.829, RMSE = 0.404). Therefore, RFR algorithms can be used for accurate estimation of LAI for crops using satellite data.

Details

Title
A COMPARISON OF MACHINE-LEARNING REGRESSION ALGORITHMS FOR THE ESTIMATION OF LAI USING LANDSAT - 8 SATELLITE DATA
Author
Yadav, V P 1 ; Prasad, R 1 ; Bala, R 1 ; Vishwakarma, A K 1 ; Yadav, S A 1 ; Singh, S K 1 

 Department of Physics, Indian Institute of Technology (BHU), Varanasi, India; Department of Physics, Indian Institute of Technology (BHU), Varanasi, India 
Pages
679-683
Publication year
2019
Publication date
2019
Publisher
Copernicus GmbH
ISSN
16821750
e-ISSN
21949034
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2585367857
Copyright
© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.