Abstract

Airborne photogrammetry and airborne laser scanning are two commonly used technologies used for topographical data acquisition at the city level. Change detection between airborne laser scanning data and photogrammetric data is challenging since the two point clouds show different characteristics. After comparing the two types of point clouds, this paper proposes a feed-forward Convolutional Neural Network (CNN) to detect building changes between them. The motivation from an application point of view is that the multimodal point clouds might be available for different epochs. Our method contains three steps: First, the point clouds and orthoimages are converted to raster images. Second, square patches are cropped from raster images and then fed into CNN for change detection. Finally, the original change map is post-processed with a simple connected component analysis. Experimental results show that the patch-based recall rate reaches 0.8146 and the precision rate reaches 0.7632. Object-based evaluation shows that 74 out of 86 building changes are correctly detected.

Details

Title
CHANGE DETECTION BETWEEN DIGITAL SURFACE MODELS FROM AIRBORNE LASER SCANNING AND DENSE IMAGE MATCHING USING CONVOLUTIONAL NEURAL NETWORKS
Author
Zhang, Z 1 ; Vosselman, G 1   VIAFID ORCID Logo  ; Gerke, M 2 ; Persello, C 1 ; Tuia, D 3 ; Yang, M Y 1 

 Dept. of Earth Observation Science, Faculty ITC, University of Twente, The Netherlands; Dept. of Earth Observation Science, Faculty ITC, University of Twente, The Netherlands 
 Institute of Geodesy and Photogrammetry, Technical University of Brunswick, Germany; Institute of Geodesy and Photogrammetry, Technical University of Brunswick, Germany 
 Wageningen University and Research, The Netherlands; Wageningen University and Research, The Netherlands 
Pages
453-460
Publication year
2019
Publication date
2019
Publisher
Copernicus GmbH
ISSN
21949042
e-ISSN
21949050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2585377278
Copyright
© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.