Abstract

The use of mobile computing technologies can change the experience of visiting cultural sites by making vast digital heritage collections accessible on site. The spread of machine learning technologies on mobile devices is encouraging the interaction of artificial intelligence with the shape of the built environment. However, while some research already applies deep learning image recognition in an urban context, the literature on how to develop effective neural networks to detect architectural features is still limited, as well as the availability of architecture-related datasets. This work presents the steps and results of the prototype development of a mobile app to perform monument recognition using convolutional neural networks. The tool allows users to interact with the physical space and access a digital archive of texts, models, images and other data.

Details

Title
ARCHITECTURE RECOGNITION BY MEANS OF CONVOLUTIONAL NEURAL NETWORKS
Author
Andrianaivo, L N 1 ; D'Autilia, R 2 ; Palma, V 3 

 FULL, the Future Urban Legacy Lab, Politecnico di Torino, Via Agostino da Montefeltro 2, 10134 Torino, Italy; FULL, the Future Urban Legacy Lab, Politecnico di Torino, Via Agostino da Montefeltro 2, 10134 Torino, Italy; Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San Leonardo Murialdo 1, 00146 Roma, Italy 
 Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San Leonardo Murialdo 1, 00146 Roma, Italy; Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San Leonardo Murialdo 1, 00146 Roma, Italy 
 FULL, the Future Urban Legacy Lab, Politecnico di Torino, Via Agostino da Montefeltro 2, 10134 Torino, Italy; FULL, the Future Urban Legacy Lab, Politecnico di Torino, Via Agostino da Montefeltro 2, 10134 Torino, Italy 
Pages
77-84
Publication year
2019
Publication date
2019
Publisher
Copernicus GmbH
ISSN
16821750
e-ISSN
21949034
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2585404667
Copyright
© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.