It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Remote sensing data and satellite images are broadly used for land cover information. There are so many challenges to classify pixels on the basis of features and characteristics. Generally it is pixel classification that required the count of pixels for certain area of interest. In the proposed model, we are applying unsupervised machine learning to classify the content of the input images on the basis of pixels intensity. The study aims to compare classification accuracy of different landscape characteristics like water, forest, urban, agricultural areas, transport network and other classes adapted from CORINE (Coordination of information on the environment) nomenclature. To fulfil the aim of the model, accessing data from Google map using Google static API service which creates a map based on URL parameters sent through a standard HTTP (Hyper Text Transfer Protocol) request and returns the map as an image which can be display on any graphical user interface platform. The Google Static Maps API returns an image either in GIF, PNG or JPEG format in response to an HTTP request. To identify different land cover/use classes using k-means clustering. The model is dynamic in nature that describes the clustering as well formulate the area of the concerned class or clustered fields.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Petroleum and Energy Studies, Dehradun, India; University of Petroleum and Energy Studies, Dehradun, India
2 Indian Institute of Remote Sensing, Dehradun, India; Indian Institute of Remote Sensing, Dehradun, India