It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
With the rapid development of subpixel matching algorithms, the estimation of image shifts with an accuracy of higher than 0.05 pixels is achieved, which makes the narrow baseline stereovision possible. Based on the subpixel matching algorithm using the robust phase correlation (PC), in this work, we present a novel hierarchical and adaptive disparity estimation scheme for narrow baseline stereo, which consists of three main steps: image coregistration, pixel-level disparity estimation, and subpixel refinement. The Fourier-Mellin transform with subpixel PC is used to co-register two input images. Then, the pixel-level disparities are estimated in an iterative manner, which is achieved through multiscale superpixels. The pixel-level PC is performed with the window sizes and locations adaptively determined according to superpixels, with the disparity values calcualted. Fast weighted median filtering based on edge-aware filter is adopted to refine the disparity results. At last, the accurate disparities are calculated via a robust subpixel PC method. The combination of multiscale superpixel hierarchy, adaptive determination of the window size and location of correlation, fast weighted median filtering and subpixel PC make the proposed scheme be able to overcome the issues of either low-texture areas or fattening effect. Experimental results on a pair of UAV images and the comparison with the fixed-window PC methods, the iterative scheme with fixed variation strategy, and a sophisticated implementation using global optimization demonstrate the superiority and reliability of the proposed scheme.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Photogrammetry and Remote Sensing, Technische Universität München, 80333 Munich, Germany; Photogrammetry and Remote Sensing, Technische Universität München, 80333 Munich, Germany
2 College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China; College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China