It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
For conducting change detection using 3D scans of a construction site, the registration between point clouds at different acquisition times is normally necessary. However, due to the complexity of constructing areas, the automatic registration of temporal scans is a challenging problem. In this work, we propose a fast and maker-free method for coarse registration between point clouds by converting the 3D matching problem into a 2D correlation problem, taking the special properties of building structures into consideration. Our proposed method consists of two major steps: the conversion from 3D points to 2D image data and the estimation of transformation parameters between 2D images in the frequency domain. In the conversion step, the point cloud of each scan is projected into a 2D grey image, by which the ground footprint of the point cloud is obtained. In the following step, we represent the 2D image in frequency-domain and estimate the horizontal transformation parameters by using Fourier-Mellin transformation. A real application is performed to validate the feasibility and effectiveness of our workflow using photogrammetric point clouds of a construction site in two different acquisition time. Regarding the real application of coarse registration of point clouds, our proposed method can achieve a registration error of less than 1 degree and more efficient than the classical baseline methods for the fast orientation between scans.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Photogrammetry and Remote Sensing, Technische Universität München, 80333 München, Germany; Photogrammetry and Remote Sensing, Technische Universität München, 80333 München, Germany
2 Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China