It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Due to the high seismicity and high annual rainfall, numerous landslides occurred and caused severe impacts in Taiwan. Typhoon Morakot in 2009 brought extreme and long-time rainfall, and caused severe disasters. After 2009, numerous large scale deep-seated landslides may still creeping, however not necessary easily to inspect the activity. In recent years, the remote sensing technology improves rapidly, providing a wide range of image, essential and precious geoinformation. Accordingly, the Small unmanned aircraft system (sUAS) has been widely used in landslide monitoring and geomorphic change detection. This study used UAS to continuously monitor a landslide area in Baolai Village in southern Taiwan, which had a catastrophic landslide event triggered by heavy rainfall caused by Typhoon Morakot in 2009. In order to accesses the potential hazards, this study integrates UAS, field geomatic survey, terrestrial laser scanner (ground LiDAR), and UAS LiDAR for sequential data acquisition since 2015. Based on the methods we are able to construct multi-temporal and high resolution DTMs, so as to access the activity and to monitoring the creeping landslides. The data set are qualified from 21 ground control points (GCPs) and 11 check points (CPs) based on real-time kinematic-global positioning system (RTK-GPS) and VBS RTK-GPS (e-GNSS). More than 10 UAS flight missions for the study areas dated since 2015, for an area large than 5–40 Km2 with 8–12 cm spatial resolution (GSD). Then, the datasets was compared with the airborne LiDAR data, to evaluate the quality and the interpretability of the dataset. Since early 2018, we integrate UAS LiDAR technology to scanning the sliding area. The density of the point cloud data sets are higher than 250 and 100 points/m2 for the total and ground point, respectively. The spatial distributions of geomorphologic changes were quantified firstly with the GCPS and CPs. The potential disaster was evaluated at different times, and the result reveals that most active regions were on the eastern side of the landslide. Significant changes in elevation were detected before the middle of 2017, however reactivated again since middle of 2018. The results of this study provide not only geoinfomatic datasets of hazardous area, but also for essential geomorphologic information/methods for other study, and for hazard mitigation and planning, as well.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Division of Watershed Management, Taiwan Forestry Research Institute, Taipei, Taiwan; Division of Watershed Management, Taiwan Forestry Research Institute, Taipei, Taiwan
2 Division of Watershed Management, Taiwan Forestry Research Institute, Taipei, Taiwan; Division of Watershed Management, Taiwan Forestry Research Institute, Taipei, Taiwan; Dept. of Civil Engineering, National Taipei University of Technology, Taipei, Taiwan
3 Dept. of Civil Engineering, National Taipei University of Technology, Taipei, Taiwan; Dept. of Civil Engineering, National Taipei University of Technology, Taipei, Taiwan
4 Dept. of Land Management and Development, Chang Jung Christian University, Tainan, Taiwan; Dept. of Land Management and Development, Chang Jung Christian University, Tainan, Taiwan