It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We discuss the holographic description of Narain U(1)c× U(1)c conformal field theories, and their potential similarity to conventional weakly coupled gravitational theories in the bulk, in the sense that the effective IR bulk description includes “U(1) gravity” amended with additional light degrees of freedom. Starting from this picture, we formulate the hypothesis that in the large central charge limit the density of states of any Narain theory is bounded by below by the density of states of U(1) gravity. This immediately implies that the maximal value of the spectral gap for primary fields is ∆1 = c/(2πe). To test the self-consistency of this proposal, we study its implications using chiral lattice CFTs and CFTs based on quantum stabilizer codes. First we notice that the conjecture yields a new bound on quantum stabilizer codes, which is compatible with previously known bounds in the literature. We proceed to discuss the variance of the density of states, which for consistency must be vanishingly small in the large-c limit. We consider ensembles of code and chiral theories and show that in both cases the density variance is exponentially small in the central charge.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 University of Kentucky, Department of Physics and Astronomy, Lexington, USA (GRID:grid.266539.d) (ISNI:0000 0004 1936 8438); Skolkovo Institute of Science and Technology, Center for Energy Science and Technology, Moscow, Russia (GRID:grid.454320.4) (ISNI:0000 0004 0555 3608)
2 University of Kentucky, Department of Physics and Astronomy, Lexington, USA (GRID:grid.266539.d) (ISNI:0000 0004 1936 8438)