Abstract

The phase offset of quantum oscillations is commonly used to experimentally diagnose topologically nontrivial Fermi surfaces. This methodology, however, is inconclusive for spin-orbit-coupled metals where π-phase-shifts can also arise from non-topological origins. Here, we show that the linear dispersion in topological metals leads to a T2-temperature correction to the oscillation frequency that is absent for parabolic dispersions. We confirm this effect experimentally in the Dirac semi-metal Cd3As2 and the multiband Dirac metal LaRhIn5. Both materials match a tuning-parameter-free theoretical prediction, emphasizing their unified origin. For topologically trivial Bi2O2Se, no frequency shift associated to linear bands is observed as expected. However, the π-phase shift in Bi2O2Se would lead to a false positive in a Landau-fan plot analysis. Our frequency-focused methodology does not require any input from ab-initio calculations, and hence is promising for identifying correlated topological materials.

A versatile methodology to detect topological quasiparticles by transport measurements remains an open problem. Here, the authors propose and experimentally observe the temperature dependence of the quantum oscillation frequency as a signature of non-trivial band topology.

Details

Title
Temperature dependence of quantum oscillations from non-parabolic dispersions
Author
Guo, Chunyu 1   VIAFID ORCID Logo  ; Alexandradinata, A. 2 ; Putzke, Carsten 1   VIAFID ORCID Logo  ; Estry, Amelia 1 ; Tu, Teng 3 ; Kumar, Nitesh 4   VIAFID ORCID Logo  ; Fan, Feng-Ren 4 ; Zhang, Shengnan 5 ; Wu, Quansheng 5   VIAFID ORCID Logo  ; Yazyev, Oleg V. 5   VIAFID ORCID Logo  ; Shirer, Kent R. 4 ; Bachmann, Maja D. 6 ; Peng, Hailin 3   VIAFID ORCID Logo  ; Bauer, Eric D. 7   VIAFID ORCID Logo  ; Ronning, Filip 7 ; Sun, Yan 4   VIAFID ORCID Logo  ; Shekhar, Chandra 4   VIAFID ORCID Logo  ; Felser, Claudia 4 ; Moll, Philip J. W. 1   VIAFID ORCID Logo 

 Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Quantum Materials (QMAT), Lausanne, Switzerland (GRID:grid.5333.6) (ISNI:0000000121839049) 
 University of Illinois at Urbana-Champaign, Institute for Condensed Matter Theory, Urbana, USA (GRID:grid.35403.31) (ISNI:0000 0004 1936 9991); University of Illinois at Urbana-Champaign, Department of Physics, Urbana, USA (GRID:grid.35403.31) (ISNI:0000 0004 1936 9991); Physics Department, University of California Santa Cruz, Santa Cruz, USA (GRID:grid.205975.c) (ISNI:0000 0001 0740 6917) 
 Peking University, Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319) 
 Max Planck Institute for Chemical Physics of Solids, Dresden, Germany (GRID:grid.419507.e) (ISNI:0000 0004 0491 351X) 
 Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Chair of Computational Condensed Matter Physics (C3MP), Lausanne, Switzerland (GRID:grid.5333.6) (ISNI:0000000121839049); École Polytechnique Fédérale de Lausanne (EPFL), National Centre for Computational Design and Discovery of Novel Materials MARVEL, Lausanne, Switzerland (GRID:grid.5333.6) (ISNI:0000000121839049) 
 Max Planck Institute for Chemical Physics of Solids, Dresden, Germany (GRID:grid.419507.e) (ISNI:0000 0004 0491 351X); University of St Andrews, School of Physics and Astronomy, St Andrews, UK (GRID:grid.11914.3c) (ISNI:0000 0001 0721 1626) 
 Los Alamos National Laboratory, Los Alamos, USA (GRID:grid.148313.c) (ISNI:0000 0004 0428 3079) 
Pages
6213
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2587481801
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.