Abstract

Alzheimer's disease is a severe neuron disease that damages brain cells which leads to permanent loss of memory also called dementia. Many people die due to this disease every year because this is not curable but early detection of this disease can help restrain the spread. Alzheimer's is most common in elderly people in the age bracket of 65 and above. An automated system is required for early detection of disease that can detect and classify the disease into multiple Alzheimer classes. Deep learning and machine learning techniques are used to solve many medical problems like this. The proposed system Alzheimer Disease detection utilizes transfer learning on Multi-class classification using brain Medical resonance imagining (MRI) working to classify the images in four stages, Mild demented (MD), Moderate demented (MOD), Non-demented (ND), Very mild demented (VMD). Simulation results have shown that the proposed system model gives 91.70% accuracy. It also observed that the proposed system gives more accurate results as compared to previous approaches.

Details

Title
Alzheimer Disease Detection Empowered with Transfer Learning
Author
Ghazal, Taher M; Sagheer Abbas; Munir, Sundus; Khan, M A; Ahmad, Munir; Issa, Ghassan F; Zahra, Syeda Binish; Khan, Muhammad Adnan; Mohammad Kamrul Hasan
Pages
5005-5019
Section
ARTICLE
Publication year
2022
Publication date
2022
Publisher
Tech Science Press
ISSN
1546-2218
e-ISSN
1546-2226
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2590731112
Copyright
© 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.