It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
One of the main objectives of microfluidic paper-based analytical devices is to present solutions particularly, for applications in low-resource settings. Therefore, screen-printing appears to be an attractive fabrication technique in the field, due to its overall simplicity, affordability, and high-scalability potential. Conversely, the minimum feature size attained using screen-printing is still rather low, especially compared to other fabrication methods, mainly attributed to the over-penetration of hydrophobic agents, underneath defined patterns on masks, into the fiber matrix of paper substrates. In this work, we propose the use of the over-penetration to our advantage, whereby an appropriate combination of hydrophobic agent temperature and substrate thickness, allows for the proper control of channel patterning, rendering considerably higher resolutions than prior arts. The implementation of Xuan paper and nail oil as novel substrate and hydrophobic agent, respectively, is proposed in this work. Under optimum conditions of temperature and substrate thickness, the resolution of the screen-printing method was pushed up to 97.83 ± 16.34 μm of channel width with acceptable repeatability. It was also found that a trade-off exists between achieving considerably high channel resolutions and maintaining high levels of repeatability of the process. Lastly, miniaturized microfluidic channels were successfully patterned on pH strips for colorimetric pH measurement, demonstrating its advantage on negligible sample-volume consumption in nano-liter range during chemical measurement and minimal interference on manipulation of precious samples, which for the first time, is realized on screen-printed microfluidic paper-based analytical devices.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 National Taiwan University of Science and Technology, Department of Mechanical Engineering, Taipei, Taiwan (GRID:grid.45907.3f) (ISNI:0000 0000 9744 5137)