It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Remdesivir is an antiviral approved for COVID-19 treatment, but its wider use is limited by intravenous delivery. An orally bioavailable remdesivir analog may boost therapeutic benefit by facilitating early administration to non-hospitalized patients. This study characterizes the anti-SARS-CoV-2 efficacy of GS-621763, an oral prodrug of remdesivir parent nucleoside GS-441524. Both GS-621763 and GS-441524 inhibit SARS-CoV-2, including variants of concern (VOC) in cell culture and human airway epithelium organoids. Oral GS-621763 is efficiently converted to plasma metabolite GS-441524, and in lungs to the triphosphate metabolite identical to that generated by remdesivir, demonstrating a consistent mechanism of activity. Twice-daily oral administration of 10 mg/kg GS-621763 reduces SARS-CoV-2 burden to near-undetectable levels in ferrets. When dosed therapeutically against VOC P.1 gamma γ, oral GS-621763 blocks virus replication and prevents transmission to untreated contact animals. These results demonstrate therapeutic efficacy of a much-needed orally bioavailable analog of remdesivir in a relevant animal model of SARS-CoV-2 infection.
Remdesivir is an approved antiviral treatment for COVID-19, but it needs to be administered intravenously. Here, Cox et al. show that GS-621763, a prodrug of remdesivir parent nucleoside GS-441524 has good oral bioavailability and inhibits SARS-CoV-2 and variants of concerns in ferrets.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details









1 Georgia State University, Center for Translational Antiviral Research, Institute for Biomedical Sciences, Atlanta, USA (GRID:grid.256304.6) (ISNI:0000 0004 1936 7400)
2 University of Washington, Virology Division, Department of Laboratory Medicine and Pathology, Seattle, USA (GRID:grid.34477.33) (ISNI:0000000122986657)
3 Gilead Sciences Inc, Foster City, USA (GRID:grid.418227.a) (ISNI:0000 0004 0402 1634)
4 Texas Biomedical Research Institute, San Antonio, USA (GRID:grid.250889.e) (ISNI:0000 0001 2215 0219)