Introduction
Age has a profound effect on DNA methylation in many tissues and cell types (Horvath, 2013; Issa, 2014; Rakyan et al., 2010; Teschendorff et al., 2010). When highly correlated age-dependent sites are modeled through the use of a tool known as the epigenetic clock, exceptionally precise estimates of chronological age (termed ‘DNAm age’ or ‘epigenetic age’) can be achieved using only purified DNA as an input (Hannum et al., 2013; Horvath, 2013; Horvath and Raj, 2018; Levine et al., 2018). For example, despite being one of the earliest epigenetic clocks constructed, Horvath’s 353 CpG site clock is capable of estimating chronological age with a median absolute error (MAE) of 3.6 years and an age correlation of 0.96, irrespective of tissue or cell type (Horvath, 2013). Estimates generated by this and related epigenetic clocks are not only predictive of chronological age but also biological age, allowing identification of pathologies as well as novel genetic and environmental factors that accelerate or slow biological aging. For example, irrespective of ethnic background, females and exceptionally long-lived individuals are found to have reduced epigenetic aging compared to males and other controls (Horvath et al., 2016; Horvath et al., 2015).
Lifespan in mammals (including humans) is highly dependent upon an individual’s sex, whereby females generally possess a longevity advantage over males (Lemaître et al., 2020). Despite being a fundamental risk factor affecting age-related pathologies, the mechanistic basis of how sex influences aging is relatively unexplored. Perhaps not surprisingly, sex hormones are predicted to play a central role, with both androgens and estrogens thought to influence aspects of the aging process (Horstman et al., 2012). Castration has been shown to extend the lifespan of laboratory rodents (Asdell et al., 1967), as well as domesticated cats (Hamilton, 1965) and dogs (Hoffman et al., 2013). Castration has also been associated with longer lifespans in historical survival reports of 14th- to 20th-century Korean eunuchs (Min et al., 2012) and men housed in US mental institutions in the 20th century (Hamilton and Mestler, 1969), although not in castrato opera singers, somewhat common in the 15th–19th centuries (Nieschlag et al., 1993). Conversely, estrogen production appears to have some protective effect on aging in females, with ovariectomized mice having a shortened lifespan (Benedusi et al., 2015) and replacement of ovaries from young animals into old female mice extending lifespan (Cargill et al., 2003). Indeed, ovariectomy has been shown to accelerate the epigenetic clock (Stubbs et al., 2017), supporting predictions that estrogen production slows the intrinsic rate of aging relative to males. In humans, natural and surgical induction of menopause also hastens the pace of the epigenetic clock, while menopausal hormone therapy decreases epigenetic aging as observed in buccal cell samples (Levine et al., 2016). Female breast tissue has substantially advanced epigenetic age compared to other tissues (Horvath, 2013; Sehl et al., 2017), further implicating sex hormones. Nevertheless, the effects of castration and/or testosterone production on the epigenetic predictors of aging in males have remained unknown in either humans or animal models prior to the current study.
Domesticated sheep (
Here, we present the first sheep epigenetic clock and quantify its median error to 5.1 months, ~3.5–4.2% of their expected lifespan. Validating the biological relevance of our sheep model, we find age-associated methylation at genes well characterized for their role in development and aging in a wide range of animal systems. Significantly, we observed that not only castration affects the epigenome, but that the methylomes of castrated male sheep show reduced epigenetic aging compared to intact male and female counterparts, a result consistent with the increased longevity of castrated Soay sheep (Jewell, 1997). Many genomic regions and genes with differential age association between castrated and intact males were identified, some of which are known to be regulated or bound by androgen receptor (AR) in humans and show sexually dimorphic methylation patterns in divergent mammalian species. Taken together, these findings provide a credible mechanistic link between levels of sex hormones and sex-dependent aging.
Results
DNA methylation in blood and ear throughout sheep aging
To create an epigenetic clock for sheep, we purified DNA from a total of 432 sheep of the Merino breed (Figure 1A). The majority of DNA samples (262) were from ear punches sourced from commercial farms in New Zealand, with the remaining (168) blood samples from a South Australian Merino flock. DNA methylation was quantified using a custom 38K probe array consisting of CpG sites conserved among a wide range of mammalian species; with 33,136 of these predicted to be complementary to sheep sequences. Two ear samples from intact males were excluded by quality control measures.
Figure 1.
Association between age and DNA methylation in sheep.
(A) Depiction of sheep cohort for this study. (B) Manhattan plot of all CpGs and their correlation with chronological age. (C) Methylation levels of highly age-correlated probes within biologically relevant genes:
Figure 1—figure supplement 1.
Characteristics of the sheep study cohort.
(A) Hierarchical clustering heat map shows methylation profiles grouped by sheep tissue type; blood (left side) vs. ear (right side).
(B) Average methylation in sheep ear and blood as age progresses. (C) The epigenetic ages of control and transgenic Huntingtin (HTT) sheep are not significantly different (p=0.30, Mann–Whitney U test).
Figure 1—figure supplement 2.
Correlation between methylation and age with group stratification.
(A) Manhattan plot of all CpGs and their correlation with chronological age when subdivided into ear punch samples (top row; females, males intact and castrated males) and blood samples (females and intact males). Those with significant hypermethylation (red) and hypomethylation (blue) correlations that are shared between sex groups in (B) blood and (C) ear are indicated. While many significantly correlated sites were shared between sexes and castration groups (45 and 84 for blood and ear punch, respectively), only four sites were shared between tissue groups.
To initially characterize methylation data, we performed hierarchical clustering that revealed two major clusters based on tissue source (Figure 1—figure supplement 1A). There was some sub-clustering based on sex and age; however, there was no separation based on known underlying pedigree variation or processing batches. Global average CpG methylation levels in ear tissue exhibited a small progressive increase with age, though the same trend was not seen in blood (Figure 1—figure supplement 1B).
Pearson correlation coefficients (r) describing the linear relationship between CpG methylation and chronological age ranged from −0.63 to 0.68 for all ear and blood samples (Figure 1B, Supplementary file 1). One of the most positively correlated mapped probes was located within the promoter of fibroblast growth factor 8 (
Construction of an epigenetic clock in sheep
We established epigenetic clocks from our sheep blood and ear methylation data, respectively, as well as a combined blood and ear clock (hereafter referred to as the
Figure 2.
Comparison of chronological age (x-axis) and epigenetic age (y-axis) for a variety of clock models trained on (A–C) sheep only or (D–G) humans and sheep.
Epigenetic age (DNAm age), correlation (cor), and median absolute error (MAE) are indicated for (A) sheep multi-tissue (ear and blood) (cor = 0.95, MAE = 0.4259), (B) sheep blood (cor = 0.75, MAE = 0.3202), and (C) sheep ear (cor = 0.97, MAE = 0.4474) clocks. For (D–G), clocks were created using methylation data from both humans and sheep, with DNAm age predictions displayed for (D) human and sheep (cor = 0.99, MAE = 1.379) and (E) sheep only (cor = 0.95, MAE = 0.3958) as calculated using absolute time (years). DNAm age was also calculated relative to maximum lifespan for (F) human and sheep (cor = 0.98, MAE = 0.02202) and (G) sheep only (cor = 0.98, MAE = 0.02073). Maximum lifespan values used were for human and sheep, respectively, were 122.5 years and 22.8 years. Each data point represents one sample, colored based on origin.
Two human and sheep dual-species clocks were also constructed, which mutually differ by way of age measurement. One estimates the chronological ages of sheep and human (in units of years), while the other estimates the relative age – a ratio of chronological age of an animal to the maximum known lifespan of its species (defined as 22.8 years and 122.5 years for sheep and human, respectively) with resulting values between 0 and 1. The measure of relative age is advantageous as it aligns the ages of human and sheep to the same scale, yielding biologically meaningful comparison between the two species. The dual-species clock for chronological age leads to a median error of 16.53 months when considering both species or 4.74 months for sheep only (Figure 2D, E). The dual-species clock for relative age produced median errors of 0.020 of the maximum lifespans for both species (approximately 2.45 years for human or 5.4 months for sheep) and 0.021 for sheep only (approximately 5.7 months; (Figure 2F, G)).
Castration delays epigenetic aging in sheep
To test the role of androgens in epigenetic age acceleration, we exploited the fact that castrated male Merino sheep are frequently left to age 'naturally' on New Zealand high-country farms in return for yearly wool production in contrast to non-breeding males of other sheep varieties, which are usually sold as yearlings for meat. Both castrated males and intact aged-matched controls were sourced from genetically similar flocks kept under comparable environmental conditions. Interestingly, intact and castrated males showed equivalent epigenetic age as juveniles; however, once they advanced beyond the yearling stage, castrates appeared to have slowed rates of epigenetic aging (Figure 3A). Indeed, when we only considered sheep beyond 18 months of age, we found that castrates had significantly reduced epigenetic age compared to intact male controls (Figure 3B, p=0.018). While the extent of age deceleration consistently increased with advancing age, mature castrates were on average epigenetically 3.1 months 'younger' than their chronological age (Figure 3B). In contrast, DNAm age of intact males was comparable to their chronological age (0.14 months age decelerated), as were females (0.76 months age accelerated), who comprised the majority of the samples from which the clock was constructed. Notably, the age deceleration observed in castrates was corroborated using the human and sheep dual-species clock (Figure 3—figure supplement 1, p=0.04).
Figure 3.
Epigenetic age deceleration in castrated sheep.
(A) Epigenetic age in age-matched castrated and intact males. To equate the cohort sizes for intact and castrated males, two age-matched castrates with DNAm age estimates closest to the group mean were excluded. (B) Age acceleration based on sex and castration status in sexually mature sheep only (ages 18 months+ only). Castrated males have decelerated DNAm age compared to intact males (*p=0.018, Mann–Whitney U test).
Figure 3—figure supplement 1.
Age acceleration based on sex and castration status in sexually mature sheep only (age 18 months+ only) using the human and sheep dual-species clock.
Asterisk indicates the significant difference between age acceleration in castrated and intact males (p=0.04, Mann–Whitney U test).
To explore the mechanistic link between androgens and epigenetic aging, we identified 4694 probes with significant differences between the rate of age-dependent methylation changes in castrated or intact males (Supplementary file 3). A recent comparison of age-related methylation changes in the blood of human males and females revealed that almost all regions of interest appeared to be X-linked (McCartney et al., 2019). Given that there are already well-characterized differences between male and female methylation patterns on the X-chromosome as a result of gene-dosage correction (Heard and Disteche, 2006), it could be argued that X-linked age-related differences may be driven by peculiarities of methylation arising from X-chromosome inactivation as opposed to differences in androgen production per se. To test this for sheep, we examined the genomic location of our androgen-sensitive differentially methylated probes (asDMPs) and found that they are evenly distributed between individual autosomes and the sex chromosomes (Figure 4—figure supplement 1A).
Interestingly, we found several sites that become progressively hypomethylated in intact males with age but maintain a consistent level of methylation throughout life in castrates and females (Figure 4A–D). Indeed, of the top 50 most significantly different asDMPs, only 2 (cg03275335
Figure 4.
Androgen-sensitive differentially methylated probes (asDMPs) in sheep ear.
(A)
Figure 4—figure supplement 1.
Androgen-sensitive differentially methylated probes (asDMPs).
(A) Chromosome location of all statistically significant asDMPs in all sheep groups. Y-axis shows the proportion of probes that map to each chromosome, normalized for chromosome size and percentage of significant probes within each comparison group. (B) All 4694 statistically significant (p<0.05) asDMPs ordered by p-value. (C, D) Observed overexpected (O/E) ratios for (C) androgen receptor (AR) and (D) the glucocorticoid receptor (NR3C1) binding to windows of 50 asDMPs, calculated from the Cistrome dataset (Figure 5).
Figure 4—figure supplement 2.
Mass and methylation in young male sheep.
(A) Mass (kg) of male lambs (<1 year) according to castration status (castrated males, green; intact males, gray; p=<0.001, error bars = SEM). p-Value was calculated using a standard t-test. (B) A positive relationship exists between castrated young males (green) and methylation at androgen-sensitive differentially methylated probes (asDMPs), but a negative correlation between intact males and methylation (gray). (C) Significance of this difference in association extends for approximately the top 1000 asDMPs. Red line indicates a significance threshold, that is, the 99th quantile for 1000 bootstrap replicates of 100 random probes.
Figure 5.
Analysis of chromatin immunoprecipitation and sequencing (ChIP-seq) data indicates functional links to sex-dependent epigenetic aging.
(A) Top 50 androgen-sensitive differentially methylated probes (asDMPs) between intact and castrated male sheep, and the human genes they map to (where applicable). The top 14 most significant asDMPs are all bound by androgen receptor (AR); and 48/50 of these sites exhibit hypomethylation with age in intact males relative to castrated males. (B) Observed transcription factor (TF) binding at the top 50 asDMPs compared to expected binding based upon empirical sampling at random CpGs (average of 1000 bootstrap replicates). TFs with greater than twofold variation and an absolute value of >1% are labeled with error bars showing the range of TF binding in bootstrap sampling. Colors indicate fold-change between observed and expected TF binding; <2 (red), 2–5 (green), and >5 (purple) (C) Genomic view of
Figure 5—figure supplement 1.
Gene views of key androgen-sensitive sites showing evidence for possible regulatory functions.
(A)
To do this, we examined TF binding of the human regions homologous to our asDMPs using the Cistrome dataset; although Cistrome contains data from a wide range of TFs, we noted that AR binds to over half the top 50 asDMPs (28/50), with the 14 most significant all showing AR binding (Figure 5A). To ensure that this was not a result expected by chance alone, we performed empirical sampling whereby 1000 replicates of binding analysis were performed, but with 50 random CpG sites from the methylation array at each bootstrap replicate. The observed/expected enrichment for AR binding in the top 50 asDMPs within the Cistrome dataset was 9.9-fold (16.5%/1.67%, p<0.001), and along with the glucocorticoid receptor (GR) (NR3C1, 6.7-fold enrichment), was much greater than any other TF. Nevertheless, there were several other interesting related TFs with observed/expected ratios >2 for the top 50 asDMPs, including the estrogen (ESR1) and progesterone (PR) receptors, as well as CCAAT/enhancer-binding protein beta (CEBP) and forkhead box A1 (FOXA1) (Figure 5B). These effects were not seen across all asDMPs - high observed/expected binding ratios were only found in the first 150 most significant asDMPs (e.g., AR and NR3C1 in Figure 4—figure supplement 1C, D), after which only background enrichment was seen.
While we saw similar features at other asDMPs (Figure 5—figure supplement 1), the asDMP that was the most different in epigenetic aging rate between castrates and males,
asDMPs are associated with body mass in juvenile males and conserved in divergent mammalian species in a tissue-specific manner
Juvenile males in our study did not show alterations in epigenetic age according to castration status (Figure 3A). Nevertheless, mass of these animals was recorded, and intact males were on average heavier than castrates, implying that there are phenotypic consequences of androgen exposure even during early puberty (Figure 6A). To explore this further, we tested if there was any relationship between the mass of juvenile males and methylation at asDMPs. Interestingly, when examined in windows of 100 (thus reducing noise), the most prominent asDMPs showed a negative association with sheep mass in intact males, but a positive association in castrates (Figure 4—figure supplement 2B). As less prominent asDMPs were analyzed, the significant difference between the castrate and intact male associations was lost (Figure 4—figure supplement 2C). Together, this shows that divergence of methylation at asDMP sites occurs early (i.e., as soon as physical traits like mass become dimorphic between intact and castrated males) and before differences in epigenetic age are manifested.
Figure 6.
Sex-specific methylation patterns for cg21524116 (
In specific tissues of mouse, probe cg21524116 (
Figure 6—figure supplement 1.
Androgen-sensitive methylation patterns at cg21524116 (
Males (blue) generally show loss of methylation during aging, whereas females (red) do not.
While the discovery of androgen-dependent age-associated methylation in sheep ear appeared striking, particularly for sites like MKLN1, we were unsure as to how widespread this phenomenon would be. Indeed, it appeared that significant male-specific hypomethylation was not present in sheep blood; and such compelling examples of this effect had not been reported previously in other species (most studies of which also involved blood). To explore this further, we assessed methylation changes in several mouse tissues using the pan-mammalian array. Again, cg21524116 in
Currently, few datasets using the pan-mammalian array have been published that involve skin or other tissues where AR expression is expected to be high. Nevertheless, DNA methylation levels in skin from a range of bat species have recently been released (Wilkinson et al., 2021). We found that at least within
Discussion
Epigenetic clocks are accurate molecular biomarkers for aging that have proven to be useful for identifying novel age-related mechanisms, diseases, and interventions that alter the intrinsic aging rate (Horvath and Raj, 2018). Here, we developed the first epigenetic clock for sheep and show that it is capable of estimating chronological age with a MAE of 5.1 months – between 3.5% and 4.2% of the average sheep lifespan. Significantly, we also present the first evidence that castration feminizes parts of the epigenome and delays epigenetic aging.
Improved survival has previously been reported in castrated sheep compared to intact males and females, at least part of which has been attributed to behavioral changes such as reduced aggression (Jewell, 1997). Our data shows that castration also causes a delay in intrinsic aging as assessed by the epigenetic clock, with an average reduction in epigenetic age of 3.1 months (Figure 3B). Moreover, delayed epigenetic aging in castrates is also seen relative to intact males and females, which is consistent with castrated males outliving intact animals of both sexes (Jewell, 1997). We also find that the degree of age deceleration observed in castrated males is dependent on their chronological age. For instance, the average DNAm deceleration is increased by an additional 1.2 months when considering individuals aged beyond 2.9 years. In contrast, we saw no difference between castrated and intact males younger than 18 months. Together this implies that the effects of androgen exposure on the epigenome and aging are cumulative. Similar findings of greater age deceleration at later chronological ages have been observed in rodent models, with long-lived calorie-restricted mice showing a younger epigenetic age relatively late in life, but similar epigenetic aging rates at younger ages (Petkovich et al., 2017).
These results support the reproductive cell-cycle theory as an explanation for sex-dependent differences in longevity of mammals (Atwood and Bowen, 2011; Bowen and Atwood, 2004). Androgens and other testicular factors may be working in an antagonistic pleiotropic manner whereby they push cells through the cell cycle and promote growth in early life to reach reproductive maturity, thus also influencing the epigenome in an age-related manner. This process, however, may become dysregulated and promote senescence at older ages, reflected in the hastening of the epigenetic clock observed in intact males compared to castrates. It is well known in farming practice that where it can be managed appropriately, leaving male sheep intact or partially intact (i.e., cryptorchid) increases body mass (Seideman et al., 1982), something we also observed in our study (Figure 4—figure supplement 2A). This indicates greater rates of cell cycle progression, cellular division, and tissue hyperplasia. Under this hypothesis, the effects of castration should depend on whether animals are castrated before or after puberty. In rats, castration just after birth (i.e., prior to puberty) causes substantial lifespan extension while castration after puberty has smaller effects (Talbert and Hamilton, 1965), supporting the idea that male gonadal hormones have effects at early-life stages that have deleterious consequences for survival.
Consequences of castration for increased survival and slowed epigenetic aging could also be linked to the effects of androgens on sexual dimorphism and adult reproductive investment (Brooks and Garratt, 2017). Life history theories predict that males in highly polygynous species, like sheep, should be selected to invest heavily in reproduction early in life, even at the expense of a shorter lifespan, because they have the potential to monopolize groups of females and quickly produce many offspring (Clutton-Brock and Isvaran, 2007; Tidière et al., 2015). By contrast, selection on females should promote a slower reproductive life strategy because female reproductive rate is limited by the number of offspring they can produce. While we show that castration slows epigenetic aging in sheep, loss of ovarian hormone production in mice and human (through ovariectomy or menopause) is associated with a hastening of the epigenetic clock (Levine et al., 2016; Stubbs et al., 2017), consistent with the beneficial effects of female ovarian hormones on survival. Thus, it appears that both male and female sex hormones differentially regulate the epigenetic aging process in directly opposing ways, in a manner that is consistent with the life history strategies classically thought to be optimal for each sex.
Comparison of intact and castrated males also allowed us to identify several age-related DMPs that display clear androgen-sensitivity (asDMPs, Figure 4A–D), with castrated males exhibiting a feminized methylation profile compared to intact counterparts at these sites. In contrast to similar experiments performed in human blood, we found that these sex-specific CpG sites are not predominantly X-linked in sheep (McCartney et al., 2019), but are instead distributed evenly throughout the genome (Figure 4—figure supplement 1A). As yet, we do not know if castration in later life would drive feminization of methylation patterns as we observed for early-life castration (Figure 4). This is, however, an interesting consideration – it is possible that castration late in life would quickly recapitulate the methylation differences seen in those castrated early in life or it may be that methylation patterns established during early growth and development are difficult to change once set on a particular aging trajectory. This distinction may be important from a functional perspective because early- and later-life castration can have differing effects on survival in rodents (Talbert and Hamilton, 1965). Moreover, while early-life castration has been shown to extend human lifespan, androgen depletion in elderly men can be associated with poor health (Araujo et al., 2011).
Many of the highly significant asDMPs (i.e., 28/50, or 58%) are bound by AR (Figure 5A). When considering TF binding compared to background levels, our data shows that particularly AR, but also NR3C1, ESR1, FOXA1, and CEBP binding are enriched in the most significant asDMPs; all of which share biologically integrated functions. NR3C1, which encodes the GR and has been previously linked to longevity in certain populations (Olczak et al., 2019), is an anabolic steroid receptor; thus, it shares significant homology in its binding domain with AR and targets many DNA sequences also bound by AR (Claessens et al., 2017). CEBP is known to directly bind AR in prostate cells (Agoulnik et al., 2003). FOXA1 has been found to regulate estrogen receptor binding (Carroll et al., 2005; Hurtado et al., 2011) as well as AR and GR binding (Sahu et al., 2013) in both normal and cancer cells. Furthermore, FOXA1 aids in ESR1-mediated recruitment of GRs to estrogen receptor binding regions (Karmakar et al., 2013). Interestingly, AR agonist treatment in breast cancer models reprograms binding of both FOXA1 and ESR (Ponnusamy et al., 2019), suggesting some degree of antagonistic function between the androgen and estrogen receptors. If this is true for asDMPs, these sites may well represent a conduit through which castrates and androgen-deprived males take on physiologically feminized traits, including delayed aging.
Having said this, it remains a possibility that methylation levels at androgen-sensitive sites have very little to do with biological aging and instead only diverge as time progresses due to the period of androgen exposure or deficiency. Specifically, the changes in methylation observed between intact and castrated males may not be adaptive at all, and rather, methylation is progressively ‘diluted’ by binding of AR to the DNA. Variable methylation at AR target genes has been reported in humans with androgen insensitivity syndrome (AIS) when compared to normal controls (Ammerpohl et al., 2013), supporting the notion that AR binding could influence age-associated methylation profiles.
The most striking example of age-dependent androgen-sensitive DNA methylation loss we found was that detected by the probe cg21524116, mapping to
In summary, this paper describes a robust epigenetic clock for sheep that is capable of estimating chronological age, detecting accelerated rates of aging, and contributes to a growing body of work on epigenetic aging. In addition to demonstrating the utility of sheep as an excellent model for aging studies, our data identify androgen-dependent age-associated methylation changes that affect known targets of sex hormone pathways and hormone binding TFs. While these changes may not promote aging per se, identification of loci with age-dependent androgen-sensitive methylation patterns uncovers novel mechanisms by which male-accelerated aging in mammals can be explained.
Materials and methods
DNA extraction and quantitation
Sheep DNA samples for this study were derived from two distinct tissues from two strains: ear tissue from New Zealand Merino and blood from South Australian Merino.
Sheep ear DNA source
Ear tissue was obtained from females and both intact and castrated male Merino sheep during routine on-farm ear tagging procedures in Central Otago, New Zealand. As a small piece of tissue is removed during the ear tagging process that is usually discarded by the farmer, we were able to source tissue and record the year of birth without altering animal experience, in accordance with the New Zealand Animal Welfare Act (1999) and the National Animal Ethics Advisory Committee (NAEAC) Occasional Paper No 2 (Carsons, 1998). The exact date of birth for each sheep is unknown; however, this was estimated to be the 18th of October each year, according to the date at which rams were put out with ewes (May 10th of each year), a predicted mean latency until mating of 12 days, and the mean gestation period from a range of sheep breeds (149 days) (Fogarty et al., 2005). Castration was performed by the farmer using the rubber ring method within approximately 5–50 days from birth as per conventional farming practice (National Animal Welfare Advisory Comittee NZ, 2018). Mass of yearlings was recorded by the farmer for both castrated and intact male sheep at 6.5 months of age as a part of routine growth assessment. In total, ear tissue from 138 female sheep aged 1 month to 9.1 years and 126 male sheep (63 intact, 63 castrates) aged 6 months to 5.8 years was collected and subjected to DNA extraction (Figure 1A).
DNA was extracted from ear punch tissue using a Bio-On-Magnetic-Beads (BOMB) protocol (Oberacker et al., 2019), which isolates DNA molecules using solid-phase reversible immobilization (SPRI) beads. Approximately 3 mm punches of ear tissue were lysed in 200 μL TNES buffer (100 mM Tris, 25 mM NaCl, 10 mM EDTA, 10% w/v SDS), supplemented with 5 μL 20 mg/mL Proteinase K and 2 μL RNAse A and incubated overnight at 55°C as per BOMB protocols. The remainder of the protocol was appropriately scaled to maximize DNA output while maintaining the necessary 2:3:4 ratio of beads:lysate:isopropanol. As such, 40 μL cell lysate, 80 μL 1.5X GITC (guanidinium thiocyanate), 40 μL TE-diluted Sera-Mag Magnetic SpeedBeads (GE Healthcare, GEHE45152105050250), and 80 μL isopropanol were combined. After allowing DNA to bind the SPRI beads, tubes were placed on a neodymium magnetic rack for ~5 min until the solution clarified and supernatant was removed. Beads were washed 1× with isopropanol and 2× with 70% ethanol, and then left to air dry on the magnetic rack. 25 μL of MilliQ H2O was added to resuspend beads, and tubes were removed from the rack to allow DNA elution. Tubes were once again set onto the magnets, and the clarified solution (containing DNA) was collected.
DNA was quantified using the Quant-iT PicoGreen dsDNA assay kit (Thermo Fisher Scientific, cat# P11496). 1 μL DNA sample was added to 14 μL TE diluted PicoGreen in MicroAmp optical 96-well plates (Thermo Fisher Scientific, cat# N8010560) as per the manufacturer's directions, sealed, and placed into a QuantStudio qPCR machine for analysis. Samples with DNA content greater than the target quantity of 25 ng/μL were diluted with MilliQ.
Sheep blood DNA source
DNA methylation was analyzed in DNA extracted from the blood of 153 South Australian Merino sheep samples (80 transgenic Huntington’s disease model sheep [OVT73 line] [Jacobsen et al., 2010] and 73 age-matched controls) aged from 2.9 to 7.0 years (Figure 1A). All protocols involving OVT73 sheep were approved by the Primary Industries and Regions South Australia (PIRSA, approval number 19/02) Animal Ethics Committee with oversight from the University of Auckland Animal Ethics Committee. The epigenetic age of the transgenic sheep carrying the
300 μL thawed blood samples were treated with two rounds of red cell lysis buffer (300 mM sucrose, 5 mM MgCl2, 10 mM Tris pH8, 1% Triton X-100) for 10 min on ice, 10 min centrifugation at 1800 RCF, and supernatant removed between each buffer treatment. The resulting cell pellet was incubated in cell digestion buffer (2.4 mM EDTA, 75 mM NaCl, 0.5% SDS) and Proteinase K (500 μg/mL) at 50°C for 2 h. Phenol:chloroform:isoamyl alcohol (PCI, 25:24:1; pH 8) was added at equal volumes, mixed by inversion, and placed in the centrifuge for 5 min at 14,000 RPM at room temperature (repeated if necessary). The supernatant was collected and combined with 100% ethanol at 2× volume, allowing precipitation of DNA. Ethanol was removed and evaporated, and 50 μL TE buffer (pH 8) was added to resuspend genomic DNA. DNA sample concentration was initially quantified using a nanodrop, followed by Qubit.
Data processing and clock construction
A custom Illumina methylation array (‘HorvathMammalMethyl40’) was used to measure DNA methylation. These arrays include 36k CpG sites conserved across mammalian species, though not all probes are expected to map to every species (Arneson et al., 2021). Using QuasR (Gaidatzis et al., 2015), 33,136 probes were assigned genomic coordinates for sheep genome assembly OviAri4.
Raw .idat files were processed using the
185 CpG sites were selected for the sheep epigenetic clock by elastic net regression using the RStudio package
The human and sheep dual-species clock was created by combining our sheep blood and ear sourced data with human methylation data previously measured using the same methylation array (‘HorvathMammalMethyl40’) (Arneson et al., 2021). This data comprises 1848 human samples aged 0–93 years and includes 16 different tissues. The clock was constructed identically to the sheep only clock, with an additional age parameter
Identification of age-associated and androgen-sensitive DMPs
Age-associated DMPs were identified using the weighted gene co-expression network analysis (WGCNA) function
TF binding analysis
TF binding at specific asDMPs was evaluated by entering the equivalent human probe position into the
2 Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles Los Angeles United States
3 Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, The University of Auckland Auckland New Zealand
4 Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles Los Angeles United States
5 Livestock and Farming Systems, South Australian Research and Development Institute Roseworthy Australia
6 Blackstone Hill Station, Becks, RD2 Omakau New Zealand
7 Department of Ecology and Evolutionary Biology, UCLA Los Angeles United States
8 Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA) Los Angeles United States
9 Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA Los Angeles United States
Karolinska Institutet Sweden
University of Washington United States
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2021, Sugrue et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
In mammals, females generally live longer than males. Nevertheless, the mechanisms underpinning sex-dependent longevity are currently unclear. Epigenetic clocks are powerful biological biomarkers capable of precisely estimating chronological age and identifying novel factors influencing the aging rate using only DNA methylation data. In this study, we developed the first epigenetic clock for domesticated sheep (
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer