Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Endemic Burkitt lymphoma (eBL) is a common pediatric cancer in sub-Saharan Africa. The incidence of this aggressive B-cell cancer is linked to Plasmodium falciparum (Pf) malaria and Epstein–Barr virus (EBV) co-infections during childhood. Most eBL tumors contain EBV and are characterized by the Epstein–Barr Nuclear Antigen 1 (EBNA1) latency I pattern of viral gene expression. The aim of our study was to compare the phenotypes and functions of CD4+ and CD8+ T cell responses to EBNA1 in children diagnosed with eBL and in healthy EBV-seropositive children to highlight differences that contribute to the balance between anti-viral immunity and eBL pathogenesis.

Abstract

Children diagnosed with endemic Burkitt lymphoma (eBL) are deficient in interferon-γ (IFN-γ) responses to Epstein–Barr Nuclear Antigen1 (EBNA1), the viral protein that defines the latency I pattern in this B cell tumor. However, the contributions of immune-regulatory cytokines and phenotypes of the EBNA1-specific T cells have not been characterized for eBL. Using a bespoke flow cytometry assay we measured intracellular IFN-γ, IL-10, IL-17A expression and phenotyped CD4+ and CD8+ T cell effector memory subsets specific to EBNA1 for eBL patients compared to two groups of healthy children with divergent malaria exposures. In response to EBNA1 and a malaria antigen (PfSEA-1A), the three study groups exhibited strikingly different cytokine expression and T cell memory profiles. EBNA1-specific IFN-γ-producing CD4+ T cell response rates were lowest in eBL (40%) compared to children with high malaria (84%) and low malaria (66%) exposures (p < 0.0001 and p = 0.0004, respectively). However, eBL patients did not differ in CD8+ T cell response rates or the magnitude of IFN-γ expression. In contrast, eBL children were more likely to have EBNA1-specific CD4+ T cells expressing IL-10, and less likely to have polyfunctional IFN-γ+IL-10+ CD4+ T cells (p = 0.02). They were also more likely to have IFN-γ+IL-17A+, IFN-γ+ and IL-17A+ CD8+ T cell subsets compared to healthy children. Cytokine-producing T cell subsets were predominantly CD45RA+CCR7+ TNAIVE-LIKE cells, yet PD-1, a marker of persistent activation/exhaustion, was more highly expressed by the central memory (TCM) and effector memory (TEM) T cell subsets. In summary, our study suggests that IL-10 mediated immune regulation and depletion of IFN-γ+ EBNA1-specific CD4+ T cells are complementary mechanisms that contribute to impaired T cell cytotoxicity in eBL pathogenesis.

Details

Title
Interplay between IL-10, IFN-γ, IL-17A and PD-1 Expressing EBNA1-Specific CD4+ and CD8+ T Cell Responses in the Etiologic Pathway to Endemic Burkitt Lymphoma
Author
Forconi, Catherine S 1   VIAFID ORCID Logo  ; Mulama, David H 2 ; Priya Saikumar Lakshmi 1 ; Foley, Joslyn 1 ; Otieno, Juliana A 3 ; Kurtis, Jonathan D 4 ; Berg, Leslie J 5 ; John M Ong’echa 2   VIAFID ORCID Logo  ; Münz, Christian 6   VIAFID ORCID Logo  ; Moormann, Ann M 1   VIAFID ORCID Logo 

 Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; [email protected] (C.S.F.); [email protected] (P.S.L.); [email protected] (J.F.) 
 Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya; [email protected] (D.H.M.); [email protected] (J.M.O.) 
 Jaramogi Oginga Odinga Teaching and Referral Hospital, Ministry of Medical Services, Kisumu 40100, Kenya; [email protected] 
 Center for International Health Research, Department of Pathology and Laboratory Medicine, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; [email protected] 
 Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; [email protected] 
 Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, CH-8057 Zurich, Switzerland; [email protected] 
First page
5375
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2596013575
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.