Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Like the widely-used semiconductor switch, Insulated Gate Bipolar Transistors (IGBTs) are subject to many failures and degradation in power electronic converters. In Short Circuit Fault (SCF), as the most reported failures in IGBTs, drastic, sudden temperature rise, and peak SCF current are widespread failures owing to a relatively long delay of the protection subsystem. This paper proposes a protection strategy to limit the junction temperature rise by limiting the SCF current by adding a small value resistor in the IGBT emitter. Second, it reduces the SCF current to a value much less than the saturated current. With the proposed control approach, sudden temperature rise during SCF is controlled, preventing significant failure in IGBTs. The extension of the permissible SCF time is achieved even for the cases with temporary arcs. A simple control loop activates in the SCF condition and does not create slow transients for the IGBT. The results of this paper are validated through simulation and experiment.

Details

Title
Reliability Enhancement of Power IGBTs under Short-Circuit Fault Condition Using Short-Circuit Current Limiting-Based Technique
Author
Mohsenzade, Sadegh 1   VIAFID ORCID Logo  ; Naghibi, Javad 2   VIAFID ORCID Logo  ; Kamyar Mehran 2   VIAFID ORCID Logo 

 Electrical Engineering Department, K. N. Toosi University of Technology, Tehran P.O. Box 15875-4416, Iran; [email protected] 
 School of Electronics Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK; [email protected] 
First page
7397
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2596027431
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.